人才队伍

教学科研人员

肖学章
肖学章 副教授|博士生导师

电话: 0571-87951876

邮箱: xzxiao@zju.edu.cn

简介

博士,副教授,博士生导师

Editor of Journal of Alloys and Compounds

研究方向: 

新型储氢材料的基础研究和氢能应用开发

纳米功能材料与技术

办公地点:浙江大学 玉泉校区 铸工楼 储氢研究室 C-201

电子邮件:xzxiaoATzju.edu.cnxiao_xuezhangAThotmail.com

通信地址:杭州市浙大路38号浙江大学材料科学与工程学院

邮        编:310027

教育经历

*2003.09-2008.06  

 浙江大学 材料科学与工程学系材料学专业  获工学博士学位

*1999.09-2003.07  

 中南大学 材料科学与工程学院材料物理专业  获学士学位

工作研究经历

*2015.02~今       浙江大学 “求是青年学者”

*2014.07~今       浙江大学 材料科学与工程学院   博士生导师

*2010.12~今       浙江大学 材料科学与工程学院   副教授/硕士生导师

*2008.07~2010.12    浙江大学 材料科学与工程学系   助理研究员/讲师

*2013.10~2014.10 

 英国 格拉斯哥大学化学学院  Academic Visitor

*2011.12~2012.05 

 美国 西弗吉尼亚大学机械与航天航空工程学系  Reserach Scientist

*2008.07~2010.07

 中国 浙江大学化学工程与技术流动站材料加工工程学科  师资博士后

 作为负责人先后承担国家自然科学基金NSAF重点项目(合作)、国家自然科学基金面上项目、国家自然科学青年基金、国家重点研发计划子课题3项、973子课题、863子课题、浙江省自然科学基金重点项目、浙江省重点科技创新团队项目、浙江省公益性技术应用研究计划、广东省先进储能材料重点实验室开放课题、中国博士后科学基金特别资助项目和中国博士后科学基金一等资助项目;作为项目骨干参加多项国家高技术研究发展计划、国家自然科学基金、教育部博士点基金和浙江省重大科技专项课题等项目。近年来在Nature Energy、Advanced Materials、Energy & Environmental Science、Nano Energy、Energy Storage Mater.、Materials Today Nano、Journal of Energy Chemistry、J Mater. Chem. A、Chemical Engineering Journal、Carbon、Chem. Commun.、Appl. Phys. Lett.、Electroch. Commun.、Int. J Hydrogen Energy、J Alloys & Comds.等国际顶级学术期刊上发表SCI论文160多篇,论文被引用3900余次,H因子38;申报国家发明专利30多项,获授权国家发明专利29项、实用新型专利2项。

现担任Journal of Alloys and Compounds期刊副主编、Journal of Nanomaterials期刊的客座编辑,浙江省能源研究会储能专委会秘书长。Nano Energy, Chemical Communications, The Journal of Physical Chemistry, Physical Chemistry Chemical Physics, Dalton Transactions, Scientific Reports, ACS Applied Energy Materials, Int. J. Hydrogen Energy, European Materials Research Society, Physica Status Solidi, Ionics和中国有色金属学报(中、英文版)等期刊的特邀审稿人。主要研究领域为新型高容量储氢材料和制氢材料的高效制备、结构表征与性能测试及其在镍氢电池、燃料电池、加氢站等方面的应用,以及锂/钠/钾离子电池电极材料。

Dr. Xuezhang Xiao

    Associate Professor, School of Materials Science and Engineering
    Zhejiang University
    Room C201, Hydrogen Storage Lab, Yuquan Campus, Zhejiang University 

    38# 310027,
    Email: xzxiaoATzju.edu.cnxiao_xuezhangAThotmail.com

Dr. Xuezhang Xiao was born in Guangdong, China, in 1979. He got the B.Sc. degree (2003) in Materials Physics from Central-South University, Changsha, and Ph.D. degree (2008) in Materials Science from Zhejiang University, Hangzhou, respectively. From July 2008 to June 2010, he joined the post-doctoral studies center of Chemical Engineering&Technology, Zhejiang University as a Postdoctoral Fellow. From December 2011 to May 2012, he visited the Department of Mechanical & Aerospace Engineering, West Virginia University in USA as Research Scientist. From October 2013 to October 2014, he visited the School of Chemistry, University of Glasgow in UK as Academic Visitor. He became a faculty member at Zhejiang University as Lecturer in Sept. 2008 and as Associate Professor in Dec. 2010. He is a member of China Renewable Energy Society. His main research interests are the basic researches and applications on renewable energy materials, including novel metal hydrides and complex hydrides for hydrogen storage, nano/amorphous hydrogen storage materials and devices for Fuel Cell and Ni/MH batteries. He is carrying out four national research projects supported by the National Natural Science Foundation, National Basic Research Program and National Postdoctoral Science Foundation of China etc. He has obtained 29 Chinese Invention Patents and published more than 160 papers among which were enlisted in Science Citation Index (SCI).


主要研究方向

新型储氢材料、纳米储能材料与技术


教学工作

  1. 本科生基础课《材料化学》

  2. 本科生专业课《储氢材料》

  3. 本科生专业课《燃料电池原理与技术》

  4. 本科生专业课《材料化学导论》

  5. 研究生专业课《金属氢系统》

  6. 本科生实验课《先进材料实验-储氢材料》


工作研究项目

作为项目或子课题负责人所承担的国家、省部级纵向科研项目:

15. 基于碳负载金属硼氢化物储氢体系的吸放氢热力学与动力学双调控机制(国家自然科学基金面上项目52171223)

14. 基于高压气固新型复合储氢材料体系的创制以及吸放氢性能调控机理(浙江省自然科学基金重点项目LZ21E010002)

13. ZrCo、Pd和U基贮氚材料氢化反应活性的表界面调控及机理研究(国家自然科学基金NSAF联合基金重点项目U2030208)

12. 静态氢压缩装置设计和制备技术(国家重点研发计划2019YFB1505103子课题)
11. 不可逆氢化物可控催化放氢动力学及高集成度放氢系统的构建(国家重点研发计划2018YFB1502104子课题)
10. 高容量镁基金属硼氢化物的催化改性及其机理研究(广东省先进储能材料重点实验室开放课题201801201912)
9. 过渡金属硼化物非晶超细颗粒的可控制备及其对轻金属硼氢化物可逆储氢的催化改性机理(国家自然科学基金面上项目51571179)
8. 车载燃料电池用纳米配位铝氢化物储氢材料的制备与中低温吸放氢关键技术研究(浙江省公益性技术应用研究计划2015C31035)
7. 过渡金属纳米复合材料的原位合成及其催化增强新型配位氢化物储氢性能与机理研究(中央高校基本科研项目2015QNA4010)
6. 高容量金属锂基配位氢化物复合储氢材料体系的研究(浙江省重点科技创新团队项目2010R50013)
5. 加氢站用固态/高压混合储氢技术(863计划2012AA051503子课题)
4. 新型双金属复合配位硼氢化物体系的吸/放氢热力学和动力学研究(国家自然科学基金项目51001090)
3. LiBH4体系的可逆吸放氢性能研究(973计划2010CB631304子课题)

2. Ca(AlH4)2/催化剂纳米体系的吸放氢性能与催化反应机制研究(中国博士后科学基金特别资助项目20090262)
1. 多元金属纳米催化剂对NaAlH4储氢性能的影响及其催化机理研究(中国博士后科学基金一等资助项目20080440196)


发表论文

ORCID ID  https://orcid.org/0000-0003-4035-5044

Select SCI Papers:

[160] Z. Liang, Z. Yao, R. Li, X. Xiao*, Z. Ye, X. Wang, J. Qi, J. Bi, X. Fan, H. Kou, W. Luo, C. Chen, L. Chen*, Regulating local chemistry in ZrCo-based orthorhombic hydrides via increasing atomic interference for ultra-stable hydrogen isotopes storage, Journal of Energy Chemistry, 2022; 69: 397-405.

image.png

[159] Z. Yao, Z. Liang, X. Xiao*, J. Qi, J. He, X. Huang, H. Kou, W. Luo, C. Chen, L. Chen*, Achieving excellent cycle stability in Zr–Nb–Co–Ni based hydrogen isotope storage alloys by controllable phase transformation reaction, Renewable Energy, 2022; 187: 500-507.

image.png

[158] Z.-M. Cao, P.-P. Zhou, X.-Z Xiao*, L.-J. Zhan, Z.-F. Jiang, S.-M. Wang, L.-J. Jiang, L.-X. Chen*, Development of Ti0.85Zr0.17(Cr-Mn-V)1.3Fe0.7-based Laves phase alloys for thermal hydrogen compression at mild operating temperatures, Rare Metals. 2022; 1007.

image.png

[157] X. Wang, X. Xiao*, Z. Liang, S. Zhang, J. Qi, L. Lv, M. Piao, J. Zheng, L. Chen*, Ultrahigh reversible hydrogen capacity and synergetic mechanism of 2LiBH4-MgH2 system catalyzed by dual-metal fluoride, Chem Eng J., 2022; 433: 134482.

image.png

[156] J. He, Z. Huang, W. Chen, X. Xiao*, Z. Yao, Z. Liang, L. Zhan, L. Lv, J. Qi, X. Fan, L. Chen*, 0D/1D/2D Co@Co2Mo3O8 nanocomposite constructed by mutual-supported Co2Mo3O8 nanosheet and Co nanoparticle: Synthesis and enhanced hydrolytic dehydrogenation of ammonia borane, Chem Eng J., 2022; 431: 133697.

image.png


[155] P. Zhou, Z. Cao, X. Xiao*, Z. Jiang, L. Zhan, Z. Li, L. Jiang, L. Chen*, Study on low-vanadium Ti–Zr–Mn–Cr–V based alloys for high-density hydrogen storage, Int J Hydrogen Energ, 2022; 47: 1710-1722.

image.png

[154] Z. Cao, P. Zhou, X. Xiao*, L. Zhan, Z. Jiang, M. Piao, S. Wang, L. Jiang, L. Chen*, Studies on Ti-Zr-Cr-Mn-Fe-V based alloys for hydrogen compression under mild thermal conditions of water bath, Journal of Alloys and Compounds. 2022; 892: 162145.

image.png

[153] Xuancheng, Xuezhang Xiao*, Jiaguang Zheng, Zhouming Hang, Wenping Lin, Zhendong Yao, Meng Zhang, Lixin Chen*, The dehydrogenation kinetics and reversibility improvements of Mg(BH4)2 doped with Ti nano-particles under mild conditions, Int J Hydrogen Energ, 2021; 46: 23737-23747.

image.png


[152] Zhaoqing Liang, Zhendong Yao, Xuezhang Xiao*, Ruhong Li, Jiacheng Qi, Jiapeng Bi, Xuancheng Wang, Huaqin Kou*, Wenhua Luo, Changan Chen, and Lixin Chen*, Dual-Ion Substitution-Induced Unique Electronic Modulation to Stabilize an Orthorhombic Lattice towards Reversible Hydrogen Isotope Storage, ACS Sustainable Chem. Eng. 2021; 9(27): 9139–9148.

image.png

[151] Panpan Zhou, Ziming Cao, Xuezhang Xiao*, Liujun Zhan, Shouquan Li, Zhinian Li, Lijun Jiang, and Lixin Chen*, Development of Ti-Zr-Mn-Cr-V based alloys for high-density hydrogen storage, Journal of Alloys and Compounds, 2021; 875: 160035.

image.png

[150] Ziming Cao, Panpan Zhou,  Xuezhang Xiao*, Liujun Zhan, Zhinian Li, Shumao Wang, Lixin Chen*, Investigation on Ti–Zr–Cr–Fe–V based alloys for metal hydride hydrogen compressor at moderate working temperatures, Int J Hydrogen Energ, 2021; 46 (41): 21580-21589.

image.png

[149] Man Chen, Yiqi Wang, Xuezhang Xiao*, Yunhao Lu, Meng Zhang, Jiaguang Zheng, Lixin Chen, Highly efficient ZrH2 nanocatalyst for the superior hydrogenation kinetics of magnesium hydride under moderate conditions: Investigation and mechanistic insights, Applied Surface Science, 2021; 541: 148375.

image.png

[148] Jiaguang Zheng, Xuancheng Wang, Xuezhang Xiao*, Hao Cheng, Liuting Zhang, Lixin Chen, Improved reversible dehydrogenation properties of Mg(BH4)2 catalyzed by dual-cation transition metal fluorides K2TiF6 and K2NbF7, Chem. Eng. J., 2021; 412: 128738.

image.png

[147] Jiaguang Zheng, Zhendong Yao, Xuezhang Xiao*, Xuancheng Wang, Jiahuan He, Man Chen, Hao Cheng, Liuting Zhang, Lixin Chen, Enhanced hydrogen storage properties of high-loading nanoconfined LiBH4–Mg(BH4)2 composites with porous hollow carbon nanospheres, Int J Hydrogen Energ, 2021; 46 (1): 852-864.

image.png

[146] Meng Zhang, Xuezhang Xiao*, Zhouming Hang, Man Chen, Xuancheng Wang, Nan Zhang, Lixin Chen, Superior catalysis of NbN nanoparticles with intrinsic multiple valence on reversible hydrogen storage properties of magnesium hydride, Int J Hydrogen Energ, 2021; 46 (1): 814-822.

image.png

[145] Bosang Luo, Zhendong Yao, Xuezhang Xiao*, Zhouming Hang, Fulei Jiang, Meijia Liu, Lixin Chen, Hydrogen desorption from MgH2+NH4Cl/graphene composites at low temperatures, Mater. Chem. Phys., 2021; 263: 124342.

image.png


[144] Z. Liang, Z. Yao, X. Xiao*, X. Wang, H. Kou, W. Luo, C. Chen, L. Chen, Positive impacts of tuning lattice on cyclic performance in ZrCo-based hydrogen isotope storage alloys, Materials Today Energy, 2021; 20: 100645.

image.png

[143] Jiahuan He, Zhendong Yao, Xuezhang Xiao*, Wenzheng Chen, Ziwei Huang, Xiulin Fan, Zhong Dong, Xu Huang, Xuancheng Wang, Man Chen, Lixin Chen, Heterostructured Ni/NiO Nanoparticles on 1D Porous MoOx for Hydrolysis of Ammonia Borane, ACS Applied Energy Materials, 2021; 4 (2): 1208-1217.

image.png

[142] Wenzheng Chen, Xuezhang Xiao*, Jiahuan He, Zhong Dong, Xuancheng Wang, Man Chen, Lixin Chen, A dandelion-like amorphous composite catalyst with outstanding performance for sodium borohydride hydrogen generation, Int J Hydrogen Energ, 2021; 46 (18): 10809-10818.

image.png

[141] X. Wang, X. Xiao*, J. Zheng, Z. Yao, M. Zhang, X. Huang, L. Chen, Insights into magnesium borohydride dehydrogenation mechanism from its partial reversibility under moderate conditions, Materials Today Energy, 2020; 18: 100552.

image.png

[140] H. Cheng, J. Zheng, X. Xiao*, Z. Liu, X. Ren, X. Wang, S. Li, L. Chen, Ultra-fast dehydrogenation behavior at low temperature of LiAlH4 modified by fluorographite, International Journal of Hydrogen Energy, 2020; 45: 28123-28133.

image.png

[139] Z. Yao, Z. Liang, X. Xiao*,  X. Huang, J. Liu, X. Wang, J. Zheng, H. Kou, W. Luo, C. Chen, L. Chen, An impact of hydrogenation phase transformation mechanism on the cyclic stabilizing behavior of Zr0.8Ti0.2Co alloy for hydrogen isotope handling, Materials Today Energy, 2020; 18: 100554.

image.png

[138] X. Huang, X. Xiao*, Y. He, Z. Yao, X. Ye, H. Kou, C. Chen, T. Huang, X. Fan and L. Chen, Probing an intermediate state by X-ray absorption near-edge structure in nickel-doped 2LiBH4–MgH2 reactive hydride composite at moderate temperature, Materials Today Nano, 2020; 12: 100090.

image.png

[137] Z. Liang, Z. Yao, X. Xiao*, H. Kou, W. Luo, C. Chen and L. Chen, The functioning mechanism of Al valid substitution for Co in improving the cycling performance of Zr–Co–Al based hydrogen isotope storage alloys, Journal of Alloys and Compounds, 2020; 848: 156618.

image.png

[136] M. Chen, X. Xiao*,  X. Wang, Y. Lu, M. Zhang, J. Zheng, L. Chen, Self-templated carbon enhancing catalytic effect of ZrO2 nanoparticles on the excellent dehydrogenation kinetics of MgH2, Carbon, 2020; 166: 46-55.

image.png

[135] Z. Yao, X. Xiao*, Z. Liang, X. Huang, H. Kou, W. Luo, C. Chen, L. Chen, An in-depth study on the thermodynamics and kinetics of disproportionation behavior in ZrCo–H systems, Journal of Materials Chemistry A, 2020; 8: 9322-9330.

image.png

[134] W. Lin, X. Xiao*, X. Wang, J.-W. Wong, Z. Yao, M. Chen, J. Zheng, Z. Hu, L. Chen, Extreme high reversible capacity with over 8.0 wt% and excellent hydrogen storage properties of MgH2 combined with LiBH4 and Li3AlH6, Journal of Energy Chemistry, 2020; 50: 296-306.

image.png

[133] M. Chen, X. Xiao*, M. Zhang, J. Mao, J. Zheng, M. Liu, X. Wang, L. Chen, Insights into 2D graphene-like TiO2 (B) nanosheets as highly efficient catalyst for improved low-temperature hydrogen storage properties of MgH2, Materials Today Energy, 2020; 16: 100411.

image.png

[132] J. Zheng, H. Cheng, X. Wang, M. Chen, X. Xiao*, L. Chen, LiAlH4 as a “Microlighter” on the Fluorographite Surface Triggering the Dehydrogenation of Mg(BH4)2: Toward More than 7 wt % Hydrogen Release below 70 °C, ACS Applied Energy Materials, 2020; 3(3): 3033-3041.

image.png

[131] J. Zhong, X. Xiao*, Z. Wu, N. Zhang, R. Jiang, X. Fan, L. Chen, Enhancing the reversibility of SnCoS4 microflower for sodium-ion battery anode material, Journal of Alloys and Compounds, 2020; 825: 154104.

image.png

[130] M. Zhang, X. Xiao*, B. Luo, M. Liu, M. Chen, L. Chen. Superior de/hydrogenation performances of MgH2 catalyzed by 3D flower-like TiO2@C nanostructures, Journal of Energy Chemistry, 2020; 46: 191-198.

image.png

[129] X. Wang, X. Xiao*, J. Zheng, X. Huang, M. Chen, L. Chen. In-situ synthesis of amorphous Mg(BH4)2 and chloride composite modified by NbF5 for superior reversible hydrogen storage properties. International Journal of Hydrogen Energy, 2020; 45: 2044-2053.

image.png

[128] R. Jiang, X. Xiao*, J. Zheng, M. Chen, L. Chen. Remarkable hydrogen absorption/desorption behaviors and mechanism of sodium alanates in-situ doped with Ti-based 2D MXene, Materials Chemistry and Physics, 2020; 242: 122529.

image.png

[127] J. Y. Zhong, X. Z. Xiao*, Y. W. Zhang et al. Rational design of Sn-Sb-S composite with yolk-shell hydrangea-like structure as advanced anode material for sodium-ion batteries. Journal of Alloys and Compounds 2019; 793: 620-626.

image.png

[126] J. G. Zheng, H. Cheng, X. Z. Xiao*, M. Chen, L. X. Chen. Enhanced low temperature hydrogen desorption properties and mechanism of Mg(BH4)2 composited with 2D MXene. International Journal of Hydrogen Energy 2019; 44: 24292-24300.

[125] Y. Zhang, X. Xiao*, W. Zhang et al. Facile formation of NiCo2O4 yolk-shell spheres for highly reversible sodium storage. Journal of Alloys and Compounds 2019; 800: 125-133.

[124] M. Zhang, X. Z. Xiao*, X. W. Wang et al. Excellent catalysis of TiO2 nanosheets with high-surface-energy {001} facets on the hydrogen storage properties of MgH2. Nanoscale 2019; 11: 7465-7473.

[123] M. Zhang, X. Xiao*, J. Mao et al. Synergistic catalysis in monodispersed transition metal oxide nanoparticles anchored on amorphous carbon for excellent low-temperature dehydrogenation of magnesium hydride. Materials Today Energy 2019; 12: 146-154.

[122] Z. D. Yao, X. Z. Xiao*, Z. Q. Liang et al. Improvement on the kinetic and thermodynamic characteristics of Zr1-xNbxCo (x=0-0.2) alloys for hydrogen isotope storage and delivery. Journal of Alloys and Compounds 2019; 784: 1062-1070.

[121] Z. D. Yao, X. Z. Xiao*, Z. Q. Liang et al. Study on the modification of Zr-Mn-V based alloys for hydrogen isotopes storage and delivery. Journal of Alloys and Compounds 2019; 797: 185-193.

[120] M. J. Liu, S. C. Zhao, X. Z. Xiao* et al. Novel 1D carbon nanotubes uniformly wrapped nanoscale MgH2 for efficient hydrogen storage cycling performances with extreme high gravimetric and volumetric capacities. Nano Energy 2019; 61: 540-549.

[119] M. J. Liu, X. Z. Xiao*, S. C. Zhao et al. ZIF-67 derived Co@CNTs nanoparticles: Remarkably improved hydrogen storage properties of MgH2 and synergetic catalysis mechanism. International Journal of Hydrogen Energy 2019; 44: 1059-1069.

[118] M. J. Liu, X. Z. Xiao*, S. C. Zhao et al. Facile synthesis of Co/Pd supported by few-walled carbon nanotubes as an efficient bidirectional catalyst for improving the low temperature hydrogen storage properties of magnesium hydride. Journal of Materials Chemistry A 2019; 7: 5277-5287.

[117] Z. Q. Liang, X. Z. Xiao*, Z. D. Yao et al. A new strategy for remarkably improving anti-disproportionation performance and cycling stabilities of ZrCo-based hydrogen isotope storage alloys by Cu substitution and controlling cutoff desorption pressure. International Journal of Hydrogen Energy 2019; 44: 28242-28251.

[116] X. Huang, X. Z. Xiao*, X. C. Wang et al. In-situ formation of ultrafine MgNi3B2 and TiB2 nanoparticles: Heterogeneous nucleating and grain coarsening retardant agents for magnesium borate in Li-Mg-B-H reactive hydride composite. International Journal of Hydrogen Energy 2019; 44: 27529-27541.

[115] Z. C. Hu, H. Y. Qin, X. Z. Xiao* et al. Excellent Catalysis of Various TiO2 Dopants with Na0.46TiO2 in Situ Formed on the Enhanced Dehydrogenation Properties of NaMgH3. Journal Of Physical Chemistry C 2019; 123: 22832-22841.

[114] X. L. Fan, X. Ji, L. Chen, J. Chen, T. Deng, F. D. Han, J. Yue, N. Piao, R. X. Wang, X. Q. Zhou, X. Z. Xiao, L. X. Chen, and C. S. Wang. All-temperature batteries enabled by fluorinated electrolytes with non-polar solvents. Nature Energy 2019; 4: 882-890.

[113] Z. Dong, F. Y. Li, Q. He, X. Z. Xiao* et al. PdCoNi nanoparticles supported on nitrogen-doped porous carbon nanosheets for room temperature dehydrogenation of formic acid. International Journal of Hydrogen Energy 2019; 44: 11675-11683.

[112] M. Chen, X. Z. Xiao*, M. Zhang et al. Excellent synergistic catalytic mechanism of in-situ formed nanosized Mg2Ni and multiple valence titanium for improved hydrogen desorption properties of magnesium hydride. International Journal Of Hydrogen Energy 2019; 44: 1750-1759.

[111] M. Chen, X. Z. Xiao*, M. Zhang et al. Highly dispersed metal nanoparticles on TiO2 acted as nano redox reactor and its synergistic catalysis on the hydrogen storage properties of magnesium hydride. International Journal of Hydrogen Energy 2019; 44: 15100-15109.

[110] J. G. Zheng, X. Z. Xiao*, Y. He et al. Enhanced reversible hydrogen desorption properties and mechanism of Mg(BH4)2-AlH3-LiH composite. Journal of Alloys and Compounds 2018; 762: 548-554.

[109] Y. W. Zhang, X. Z. Xiao*, B. S. Luo, X. Huang, M. J. Liu, L. X. Chen. Synergistic Effect of LiBH4 and LiAIH4 Additives on Improved Hydrogen Storage Properties of Unexpected High Capacity Magnesium Hydride. Journal of Physical Chemistry C 2018; 122: 2528-2538.

[108] W. Zhang, X. Z. Xiao*, Y. W. Zhang et al. In situ synthesized SnO2 nanorod/reduced graphene oxide low-dimensional structure for enhanced lithium storage. Nanotechnology 2018; 29.

[107] Z. D. Yao, L. X. Liu, X. Z. Xiao*, C. T. Wang, L. J. Jiang, L. X. Chen. Effect of rare earth doping on the hydrogen storage performance of Ti1.02Cr1.1Mn0.3Fe0.6 alloy for hybrid hydrogen storage application. Journal of Alloys and Compounds 2018; 731: 524-530.

[106] Y. J. Liu, X. Z. Xiao*, X. L. Fan et al. GeP5/C composite as anode material for high power sodium-ion batteries with exceptional capacity. Journal of Alloys and Compounds 2018; 744: 15-22.

[105] Z. J. Liang, X. Z. Xiao*, X. Y. Yu et al. Non-noble trimetallic Cu-Ni-Co nanoparticles supported on metal-organic frameworks as highly efficient catalysts for hydrolysis of ammonia borane. Journal of Alloys and Compounds 2018; 741: 501-508.

[104] Y. Q. Jiang, X. L. Fan, M. Chen, X. Z. Xiao* et al. AuPd Nanoparticles Anchored on Nitrogen-Decorated Carbon Nanosheets with Highly Efficient and Selective Catalysis for the Dehydrogenation of Formic Acid. Journal of Physical Chemistry C 2018; 122: 4792-4801.

[103] Y. Q. Jiang, M. Chen, Y. F. Yang, X. L. Zhang, X. Z. Xiao* et al. Facile synthesis of AuPd nanoparticles anchored on TiO2 nanosheets for efficient dehydrogenation of formic acid. Nanotechnology 2018; 29: 8.

[102] X. Huang, X. Z. Xiao*, X. C. Wang et al. Highly synergetic catalytic mechanism of Ni@g-C3N4 on the superior hydrogen storage performance of Li-Mg-B-H system. Energy Storage Materials 2018; 13: 199-206.

[101] X. Huang, X. Z. Xiao*, X. C. Wang et al. Synergistic Catalytic Activity of Porous Rod-like TMTiO3 (TM = Ni and Co) for Reversible Hydrogen Storage of Magnesium Hydride. Journal of Physical Chemistry C 2018; 122: 27973-27982.

[100] C. J. Cheng, M. Chen, X. Z. Xiao*, X. Huang, J. G. Zheng, L. X. Chen. Superior Reversible Hydrogen Storage Properties and Mechanism of LiBH4-MgH2-Al Doped with NbF5 Additive. Journal of Physical Chemistry C 2018; 122: 7613-7620.

[99] J. G. Zheng, X. Z. Xiao, L. T. Zhang, S. Q. Li, H. W. Ge, L. X. Chen. Facile synthesis of bowl-like 3D Mg(BH4)2-NaBH4-fluorographene composite with unexpected superior dehydrogenation performances. Journal of Materials Chemistry A 2017; 5: 9723-9732.

[98] J. G. Zheng, X. Z. Xiao, L. T. Zhang et al. Study on the dehydrogenation properties and reversibility of Mg(BH4)2-AlH3 composite under moderate conditions. International Journal of Hydrogen Energy 2017; 42: 8050-8056.

[97] W. Zhang, M. Li, X. Z. Xiao et al. In situ synthesis of ultrasmall SnO2 quantum dots on nitrogen-doped reduced graphene oxide composite as high performance anode material for lithium-ion batteries. Journal of Alloys And Compounds 2017; 727: 1-7.

[96] L. T. Zhang, J. G. Zheng, X. Z. Xiao et al. A new strategy to remarkably improve the low-temperature reversible hydrogen desorption performances of LiBH4 by compositing with fluorographene. International Journal of Hydrogen Energy 2017; 42: 20046-20055.

[95] L. T. Zhang, J. G. Zheng, X. Z. Xiao et al. Enhanced hydrogen storage properties of a dualcation (Li+, Mg2+) borohydride and its dehydrogenation mechanism. Rsc Advances 2017; 7: 36852-36859.

[94] L. T. Zhang, L. X. Chen, X. L. Fan, X. Z. Xiao, J. G. Zheng, X. Huang. Enhanced hydrogen storage properties of MgH2 with numerous hydrogen diffusion channels provided by Na2Ti3O7 nanotubes. Journal of Materials Chemistry A 2017; 5: 6178-6185.

[93] X. Z. Xiao, T. Qin, Y. Jiang et al. Significantly enhanced hydrogen desorption properties of Mg(AlH4)2 nanoparticles synthesized using solvent free strategy. Progress In Natural Science-Materials International 2017; 27: 112-120.

[92] C. C. Weng, X. Z. Xiao, X. Huang et al. Effect of Mn substitution for Co on the structural, kinetic, and thermodynamic characteristics of ZrCo1-xMnx (x=0-0.1) alloys for tritium storage. International Journal of Hydrogen Energy 2017; 42: 28498-28506.

[91] J. Sun, X. Z. Xiao, Z. J. Zheng et al. Synthesis of nanoscale CeAl4 and its high catalytic efficiency for hydrogen storage of sodium alanate. Rare Metals 2017; 36: 77-85.

[90] M. Li, X. Z. Xiao, X. L. Fan, X. Huang, Y. J. Liu, L. X. Chen. Carbon coated sodium-titanate nanotube as an advanced intercalation anode material for sodium-ion batteries. Journal of Alloys And Compounds 2017; 712: 365-372.

[89] M. Li, X. Xiao, Y. Liu, W. Zhang, Y. Zhang, L. Chen. Ternary perovskite cobalt titanate/graphene composite material as long-term cyclic anode for lithium-ion battery. Journal of Alloys And Compounds 2017; 700: 54-60.

[88] Y. Q. Jiang, X. L. Fan, X. Z. Xiao et al. La2O3-modified highly dispersed AuPd alloy nanoparticles and their superior catalysis on the dehydrogenation of formic acid. International Journal of Hydrogen Energy 2017; 42: 9353-9360.

[87] X. Huang, X. Z. Xiao, W. Zhang et al. Transition metal (Co, Ni) nanoparticles wrapped with carbon and their superior catalytic activities for the reversible hydrogen storage of magnesium hydride. Physical Chemistry Chemical Physics 2017; 19: 4019-4029.

[86] B. Zhai, X. Xiao, W. Lin, X. Huang, X. Fan, S. Li, H. Ge, Q. Wang, and L. Chen. Enhanced hydrogen desorption properties of LiBH4-Ca(BH4)2 by a synergetic effect of nanoconfinement and catalysis, Int. J Hydrogen Energ, 2016, 41(39), 17462-17470.

[85] C. C. Xu, X. Z. Xiao, J. Shao, L. X. Liu, T. Qin, and L. X. Chen. Effects of Ti-based additives on Mg2FeH6 dehydrogenation properties, Transactions of Nonferrous Metals Society of China, 2016, 26(3), 791-798.

[84] X. Z. Xiao, Z. Liu, S. Saremi-Yarahmadi, and D. H. Gregory: 'Facile preparation of beta-/gamma-MgH2 nanocomposites under mild conditions and pathways to rapid dehydrogenation, Phys. Chem. Chem. Phys., 2016, 18(15), 10492-10498.

[83] G. Tu, J. He, X. Xiao, L. Chen, Q. Ren, X. Du, and M. Luo: 'Synergetic Effect of NbH@h-BN on Dehydrogenation of LiBH4, Chemical Journal of Chinese Universities-Chinese, 2016, 37(10), 1757-1762.

[82] M. Li, X. L. Fan, X. Z. Xiao, X. Huang, Y. Q. Jiang, and L. X. Chen. Ternary perovskite nickel titanate/reduced graphene oxide nano-composite with improved lithium storage properties, Rsc Advances, 2016, 6(66), 61312-61318.

[81] Y. Q. Jiang, X. L. Fan, X. Z. Xiao, T. Qin, L. T. Zhang, F. L. Jiang, M. Li, S. Q. Li, H. W. Ge, and L. X. Chen. Novel AgPd hollow spheres anchored on graphene as an efficient catalyst for dehydrogenation of formic acid at room temperature, Journal of Materials Chemistry A, 2016, 4(2), 657-666.

[80] X. Huang, X. Z. Xiao, J. Shao, B. Zhai, X. L. Fan, C. J. Cheng, S. Q. Li, H. W. Ge, Q. D. Wang, and L. X. Chen. Building robust architectures of carbon-wrapped transition metal nanoparticles for high catalytic enhancement of the 2LiBH4-MgH2 system for hydrogen storage cycling performance, Nanoscale, 2016, 8(31), 14898-14908.


[79]      Guoping Tu, Xuezhang Xiao, Yiqun Jiang, Teng Qin, Shouquan Li, Hongwei Ge, Qidong Wang and Lixin Chen. Composite Cooperative enhancement on the hydrogen desorption kinetics of LiBH4 by co-doping with NbCl5 and hexagonal BN, International Journal of Hydrogen Energy, 2015; 40, 10527–10535.

[78]      Guoping Tu, Xuezhang Xiao, Teng Qin, Yiqun Jiang, Shouquan Li, Hongwei Ge, Qidong Wang and Lixin Chen. Significantly improved de/rehydrogenation properties of lithium borohydride modified with hexagonal boron nitride, RSC Advances, 2015; 5, 51110–51115.

[77]      Jie Shao, Xuezhang Xiao, Xiulin Fan, Xu Huang, Bing Zhai, Shouquan Li, Hongwei Ge, Qidong Wang, Lixin Chen. Enhanced hydrogen storage capacity and reversibility of LiBH4 nanoconfined in the densified zeolite-templated carbon with high mechanical stability, Nano Energy, 2015; 15, 244−255.

[76]      C. C. Xu, X. Z. Xiao, J. Shao, L. T. Zhang, T. Qin, L. X. Chen. Effects of Ti-based additives on the Mg2FeH6 dehydrogenation properties, Transactions of Nonferrous Metals Society of China, 2015; in press.

[75]      Liuting Zhang, Xuezhang Xiao, Chenchen Xu, Jiaguang Zheng, Xiulin Fan, Jie Shao, Shouquan Li, Hongwei Ge, Qidong Wang, Lixin Chen. Remarkably Improved Hydrogen Storage Performance of MgH2 Catalyzed by Multi-valence NbHx Nanoparticles, Journal of Physical Chemistry C, 2015; 119, 8554−8562.

[74]      Langxia Liu, Lixin Chen, Xuezhang Xiao, Chenchen Xu, Jian Sun, Shouquan Li, Hongwei Ge, Lijun Jiang. Influence of annealing treatment on the microstructure and hydrogen storage performance of Ti1.02Cr1.1Mn0.3Fe0.6 alloy for hybrid hydrogen storage application. Journal of Alloys and Compounds, 2015; 636: 117-123.

[73]      X. Z. Xiao, C. C. Xu, J. Shao, L. T. Zhang, T. Qin, S. Q. Li, H. W. Ge, Q. D. Wang, L. X. Chen. Remarkable Hydrogen Desorption Properties and Mechanisms for Mg2FeH6@MgH2 Core-Shell Nanostructure, Journal of Materials Chemistry A, 2015; 3: 5517-5524.

[72]      L. T. Zhang, X. Z. Xiao, X. L. Fan, S. Q. Li, H. W. Ge, Q. D. Wang, L. X. Chen. Fast hydrogen release under moderate conditions from NaBH4 destabilized by fluorographite, RSC Advances, 2014; 4: 2550-2556.

[71]      L. T. Zhang, L. X. Chen, X. Z. Xiao, X. L. Fan, J. Shao, S. Q. Li, H. W. Ge, Q. D. Wang. Fluorographene nanosheets enhanced hydrogen absorption and desorption performances of magnesium hydride, International Journal of Hydrogen Energy, 2014; 39: 12715-12726.

[70]      L. T. Zhang, L. X. Chen, X. Z. Xiao, Z. W. Chen, S. K. Wang, X. L. Fan, S. Q. Li, H. W. Ge, Q. D. Wang. Superior dehydrogenation performance of nanoscale lithium borohydride modified with fluorographite, International Journal of Hydrogen Energy, 2014; 39: 896-904.

[69]      Xiulin Fan, JieShao, XuezhangXiao, XinhuaWang, Shouquan Li, HongweiGe, LixinChen. SnLi4.4 nanoparticles encapsulated in carbon matrix as high performance anode material for lithium-ion batteries, Nano Energy, 2014; 9, 196−203.

[68]      X. Z. Xiao, S. K. Wang, G. P. Tu, L. T. Zhang, X. L. Fan, S. Q. Li, H. W. Ge, Q. D. Wang, L. X. Chen. Enhanced reversible hydrogen storage performance of NbCl5 doped 2LiH-MgB2 composite, International Journal of Hydrogen Energy, 2014; 39: 2132-2141.

[67]      X. Z. Xiao, S. K. Wang, X. L. Fan, C. C. Xu, J. Sun, Q. D. Wang, L. X. Chen. Improved de/hydrogenation properties and favorable reaction mechanism of CeH2 + KH co-doped sodium aluminum hydride, International Journal of Hydrogen Energy, 2014; 39: 6577-6587.

[66]      J. Shao, X. Z. Xiao, X. L. Fan, L. T. Zhang, S. Q. Li, H. W. Ge, Q. D. Wang, L. X. Chen. Low-Temperature Reversible Hydrogen Storage Properties of LiBH4: A Synergetic Effect of Nanoconfinement and Nanocatalysis, Journal of Physical Chemistry C, 2014; 118: 11252-11260.

[65]      L. Y. Han, X. Z. Xiao, S. K. Wang, X. L. Fan, S. Q. Li, H. W. Ge, L. X. Chen. Dehydrogenation Behavior and Mechanism of LiBH4 Doped with Ce2Mg17 and Its Hydride, Rare Metal Materials and Engineering, 2014; 43: 1935-1938.

[64]      L. Y. Han, X. Z. Xiao, X. L. Fan, Y. Li, S. Q. Li, H. W. Ge, Q. D. Wang, L. X. Chen. Enhanced dehydrogenation performances and mechanism of LiBH4/Mg17Al12-hydride composite, Transactions of Nonferrous Metals Society of China, 2014; 24: 152-157.

[63]      X. L. Fan, X. Z. Xiao, L. X. Chen, J. Shao, L. T. Zhang, S. Q. Li, H. W. Ge, Q. D. Wang. Superior Catalytic Effects of Transition Metal Boride Nanoparticles on the Reversible Hydrogen Storage Properties of Li-Mg-B-H System, Particle & Particle Systems Characterization, 2014; 31: 195-200.

[62]      X. L. Fan, J. Shao, X. Z. Xiao, X. H. Wang, S. Q. Li, H. W. Ge, L. X. Chen, C. S. Wang. In situ synthesis of SnO2 nanoparticles encapsulated in micro/mesoporous carbon foam as a high-performance anode material for lithium ion batteries, Journal of Materials Chemistry A, 2014; 2: 18367-18374.

[61]      X. L. Fan, J. Shao, X. Z. Xiao, L. X. Chen, X. H. Wang, S. Q. Li, H. W. Ge. Carbon encapsulated 3D hierarchical Fe3O4 spheres as advanced anode materials with long cycle lifetimes for lithium-ion batteries, Journal of Materials Chemistry A, 2014; 2: 14641-14648.

[60]      Z. W. Chen, X. Z. Xiao, L. X. Chen, X. L. Fan, L. X. Liu, S. Q. Li, H. W. Ge, Q. D. Wang. Influence of Ti super-stoichiometry on the hydrogen storage properties of Ti1+xCr1.2Mn0.2Fe0.6 (x=0-0.1) alloys for hybrid hydrogen storage application, Journal of Alloys and Compounds, 2014; 585: 307-311.

[59]      X. Z. Xiao, L. T. Zhang, X. L. Fan, L. Y. Han, J. Shao, S. Q. Li, H. W. Ge, Q. D. Wang, L. X. Chen. Synergetic Effect of in Situ Formed Nano NbH and LiH1-xFx for Improving Reversible Hydrogen Storage Properties of the Li-Mg-B-H System, Journal of Physical Chemistry C, 2013; 117: 12019-12025.

[58]      Z. Wu, L. X. Chen, X. Z. Xiao, X. L. Fan, S. Q. Li, Q. D. Wang. Influence of lanthanon hydride catalysts on hydrogen storage properties of sodium alanates, Journal of Rare Earths, 2013; 31: 502-506.

[57]      S. K. Wang, Z. J. Li, X. Z. Xiao, X. L. Fan, Z. W. Chen, S. Q. Li, H. W. Ge, L. X. Chen. Influence of KH on Reversible Dehydriding Performance of Na-Al-H Complex Hydride, Acta Physico-Chimica Sinica, 2013; 29: 1804-1808.

[56]      J. Shao, X. Z. Xiao, L. X. Chen, X. L. Fan, L. Y. Han, S. Q. Li, H. W. Ge, Q. D. Wang. Enhanced hydriding-dehydriding performance of a 2LiH-MgB2 composite by the catalytic effects of Ni-B nanoparticles, Journal of Materials Chemistry A, 2013; 1: 10184-10192.

[55]      J. Shao, X. Z. Xiao, X. L. Fan, L. X. Chen, H. Y. Zhu, S. Q. Yu, Z. D. Gong, S. Q. Li, H. W. Ge, Q. D. Wang. A low temperature mechanochemical synthesis and characterization of amorphous Ni-B ultrafine nanoparticles, Mater. Lett., 2013; 109: 203-206.

[54]      X. L. Fan, X. Z. Xiao, J. Shao, L. T. Zhang, S. Q. Li, H. W. Ge, Q. D. Wang, L. X. Chen. Size effect on hydrogen storage properties of NaAlH4 confined in uniform porous carbons, Nano Energy, 2013; 2: 995-1003.

[53]      X. L. Fan, X. Z. Xiao, L. X. Chen, L. T. Zhang, J. Shao, S. Q. Li, H. W. Ge, Q. D. Wang. Significantly improved hydrogen storage properties of NaAlH4 catalyzed by Ce-based nanoparticles, Journal of Materials Chemistry A, 2013; 1: 9752-9759.

[52]      X. L. Fan, X. Z. Xiao, L. X. Chen, X. H. Wang, S. Q. Li, H. W. Ge, Q. D. Wang. High catalytic efficiency of amorphous TiB2 and NbB2 nanoparticles for hydrogen storage using the 2LiBH4-MgH2 system, Journal of Materials Chemistry A, 2013; 1: 11368-11375.

[51]      Z. W. Chen, X. Z. Xiao, L. X. Chen, X. L. Fan, L. X. Liu, S. Q. Li, H. W. Ge, Q. D. Wang. Development of Ti-Cr-Mn-Fe based alloys with high hydrogen desorption pressures for hybrid hydrogen storage vessel application, International Journal of Hydrogen Energy, 2013; 38: 12803-12810.

[50]      X. Z. Xiao, J. Shao, L. X. Chen, H. Q. Kou, X. L. Fan, S. S. Deng, L. T. Zhang, S. Q. Li, H. W. Ge, Q. D. Wang. Effects of NbF5 addition on the de/rehydrogenation properties of 2LiBH4/MgH2 hydrogen storage system, International Journal of Hydrogen Energy, 2012; 37: 13147-13154.

[49]      J. Shao, X. Z. Xiao, L. X. Chen, X. L. Fan, S. Q. Li, H. W. Ge, Q. D. Wang. Enhanced hydriding-dehydriding performance of 2LiBH4-MgH2 composite by the catalytic effects of transition metal chlorides, Journal of Materials Chemistry, 2012; 22: 20764-20772.

[48]      Y. Li, X. Z. Xiao, L. X. Chen, L. Y. Han, J. Shao, X. L. Fan, S. Q. Li, Q. D. Wang. Effects of Fluoride Additives on the Hydrogen Storage Performance of 2LiBH4-Li3AlH6 Destabilized System, Journal of Physical Chemistry C, 2012; 116: 22226-22230.

[47]      C. X. Li, X. Z. Xiao, P. Q. Ge, J. W. Xue, S. Q. Li, H. W. Ge, L. X. Chen. Investigation on synthesis, structure and catalytic modification of Ca(AlH4)2 complex hydride, International Journal of Hydrogen Energy, 2012; 37: 936-941.

[46]      H. Q. Kou, X. Z. Xiao, J. X. Li, S. Q. Li, H. W. Ge, Q. D. Wang, L. X. Chen. Effects of fluoride additives on dehydrogenation behaviors of 2LiBH4+MgH2 system, International Journal of Hydrogen Energy, 2012; 37: 1021-1026.

[45]      K. Jiang, X. Z. Xiao, L. X. Chen, L. Y. Han, S. Q. Li, H. W. Ge, Q. D. Wang. A comparative study of the hydrogen storage properties of LiBH4 doping with CaHCl and CaH2, Journal of Alloys and Compounds, 2012; 539: 103-107.

[44]      Z. M. Hang, X. Z. Xiao, S. Q. Li, H. W. Ge, C. P. Chen, L. X. Chen. Influence of heat treatment on the microstructure and hydrogen storage properties of Ti10V77Cr6Fe6Zr alloy, Journal of Alloys and Compounds, 2012; 529: 128-133.

[43]      S. S. Deng, X. Z. Xiao, L. Y. Han, Y. Li, S. Q. Li, H. W. Ge, Q. D. Wang, L. X. Chen. Hydrogen storage performance of 5LiBH4+Mg2FeH6 composite system, International Journal of Hydrogen Energy, 2012; 37: 6733-6740.

[42]      S. S. Deng, X. Z. Xiao, L. X. Chen, L. Y. Han, S. Q. Li, H. W. Ge, Q. D. Wang. Effects of Stoichiometry and Dehydrogenation Back-pressure on the Dehydrogenation Behavior of LiBH4+xMg2NiH4 Composites, Chemical Journal of Chinese Universities-Chinese, 2012; 33: 2030-2034.

[41]      X. Z. Xiao, K. R. Yu, X. L. Fan, Z. Wu, X. H. Wang, C. P. Chen, Q. D. Wang, L. X. Chen. Synthesis and hydriding/dehydriding properties of nanosized sodium alanates prepared by reactive ball-milling, International Journal of Hydrogen Energy, 2011; 36: 539-548.

[40]      X. Z. Xiao, C. X. Li, L. X. Chen, X. L. Fan, H. Q. Kou, Q. D. Wang. Synthesis and dehydrogenation of CeAl4-doped calcium alanate, Journal of Alloys and Compounds, 2011; 509: S743-S746.

[39]      S. K. Peng, X. Z. Xiao, Z. M. Hang, F. Wu, C. X. Li, S. Q. Li, L. X. Chen. Phase-structure and Hydrogen Storage Behaviors of Mg+10% Ni2P Composite Prepared by Reactive Ball-Milling, Rare Metal Materials and Engineering, 2011; 40: 1387-1391.

[38]      C. X. Li, X. Z. Xiao, L. X. Chen, K. Jiang, S. Q. Li, Q. D. Wang. Synthesis of calcium alanate and its dehydriding performance enhanced by FeF3 doping, Journal of Alloys and Compounds, 2011; 509: 590-595.

[37]      H. Q. Kou, X. Z. Xiao, L. X. Chen, S. Q. Li, Q. D. Wang. Formation mechanism of MgB2 in 2LiBH4 + MgH2 system for reversible hydrogen storage, Transactions of Nonferrous Metals Society of China, 2011; 21: 1040-1046.

[36]      K. Jiang, X. Z. Xiao, S. S. Deng, M. Zhang, S. Q. Li, H. W. Ge, L. X. Chen. A Novel Li-Ca-B-H Complex Borohydride: Its Synthesis and Hydrogen Storage Properties, Journal of Physical Chemistry C, 2011; 115: 19986-19993.

[35]      X. L. Fan, X. Z. Xiao, L. X. Chen, S. Q. Li, Q. D. Wang. Investigation on the nature of active species in the CeCl3-doped sodium alanate system, Journal of Alloys and Compounds, 2011; 509: S750-S753.

[34]      X. L. Fan, X. Z. Xiao, L. X. Chen, S. Q. Li, H. W. Ge, Q. D. Wang. Enhanced Hydriding-Dehydriding Performance of CeAl2-Doped NaAlH4 and the Evolvement of Ce-Containing Species in the Cycling, Journal of Physical Chemistry C, 2011; 115: 2537-2543.

[33]      X. L. Fan, X. Z. Xiao, L. X. Chen, S. Q. Li, H. W. Ge, Q. D. Wang. Direct synthesis and hydrogen storage behaviors of nanocrystalline Na2LiAlH6, Journal of Materials Science, 2011; 46: 3314-3318.

[32]      X. L. Fan, X. Z. Xiao, L. X. Chen, L. Y. Han, S. Q. Li, H. W. Ge, Q. D. Wang. Hydriding-dehydriding kinetics and the microstructure of La- and Sm-doped NaAlH4 prepared via direct synthesis method, International Journal of Hydrogen Energy, 2011; 36: 10861-10869.

[31]      X. L. Fan, X. Z. Xiao, L. X. Chen, L. Y. Han, S. Q. Li, H. W. Ge, Q. D. Wang. Thermodynamics, Kinetics, and Modeling Investigation on the Dehydrogenation of CeAl4-Doped NaAlH4 Hydrogen Storage Material, Journal of Physical Chemistry C, 2011; 115: 22680-22687.

[30]      L. X. Chen, X. L. Fan, X. Z. Xiao, J. W. Xue, S. Q. Li, H. W. Ge, C. P. Chen. Influence of TiC catalyst on absorption/desorption behaviors and microstructures of sodium aluminum hydride, Transactions of Nonferrous Metals Society of China, 2011; 21: 1297-1302.

[29]      X. Z. Xiao, G. C. Liu, S. K. Peng, K. R. Yu, S. Q. Li, C. P. Chen, L. X. Chen. Microstructure and hydrogen storage characteristics of nanocrystalline Mg plus x wt% LaMg2Ni (x=0-30) composites, International Journal of Hydrogen Energy, 2010; 35: 2786-2790.

[28]      S. K. Peng, X. Z. Xiao, R. J. Xu, L. Li, F. Wu, S. Q. Li, Q. D. Wang, L. X. Chen. Hydrogen storage behaviors and microstructure of MF3 (M=Ti, Fe)-doped magnesium hydride, Transactions of Nonferrous Metals Society of China, 2010; 20: 1879-1884.

[27]      Z. M. Hang, X. Z. Xiao, K. R. Yu, S. Q. Li, C. P. Chen, L. X. Chen. Influence of Fe content on the microstructure and hydrogen storage properties of Ti16Zr5Cr22V57-xFex (x=2-8) alloys, International Journal of Hydrogen Energy, 2010; 35: 8143-8148.

[26]      Z. M. Hang, X. Z. Xiao, D. Z. Tan, Z. H. He, W. P. Li, S. Q. Li, C. P. Chen, L. X. Chen. Microstructure and hydrogen storage properties of Ti10V84-xFe6Zrx (x=1-8) alloys, International Journal of Hydrogen Energy, 2010; 35: 3080-3086.

[25]      Z. M. Hang, L. X. Chen, X. Z. Xiao, S. Q. Li, C. P. Chen, Y. Q. Lei, Q. D. Wang. The effect of Cr content on the structural and hydrogen storage characteristics of Ti10V80-xFe6Zr4Crx (x=0-14) alloys, Journal of Alloys and Compounds, 2010; 493: 396-400.

[24]      X. Z. Xiao, X. L. Fan, K. R. Yu, S. Q. Li, C. P. Chen, Q. D. Wang, L. X. Chen. Catalytic Mechanism of New TiC-Doped Sodium Alanate for Hydrogen Storage, Journal of Physical Chemistry C, 2009; 113: 20745-20751.

[23]      X. Z. Xiao, L. X. Chen, Z. M. Hang, X. H. Wang, S. Q. Li, C. P. Chen, Y. Q. Lei, Q. D. Wang. Microstructures and electrochemical hydrogen storage properties of novel Mg-Al-Ni amorphous composites, Electrochemistry Communications, 2009; 11: 515-518.

[22]      X. Z. Xiao, L. X. Chen, X. L. Fan, X. H. Wang, C. P. Chen, Y. Q. Lei, Q. D. Wang. Direct synthesis of nanocrystalline NaAlH4 complex hydride for hydrogen storage, Applied Physics Letters, 2009; 94.

[21]      Y. M. Jia, F. Y. Liu, X. Z. Xiao, Z. M. Hang, Y. Q. Lei, L. X. Chen. Microstructure and Electrochemical Properties of V2.1TiNi0.4Zr0.06Cu0.03M0.10 (M=Cr, Co, Fe, Nb, Ta) Hydrogen Storage Alloys, Acta Physico-Chimica Sinica, 2009; 25: 247-252.

[20]      Y. M. Jia, L. X. Chen, X. Z. Xiao, K. R. Yu, T. Ying, Y. Q. Lei. Effect of quenching treatment on the phase structure and electrochemical properties of V2.1TiNi0.4Zr0.06Mn0.05 alloy, International Journal of Hydrogen Energy, 2009; 34: 7756-7760.

[19]      X. L. Fan, X. Z. Xiao, J. C. Hou, Z. Zhang, Y. B. Liu, Z. Wu, C. P. Chen, Q. D. Wang, L. Chen. Reversible hydrogen storage behaviors and microstructure of TiC-doped sodium aluminum hydride, Journal of Materials Science, 2009; 44: 4700-4704.

[18]      X. L. Fan, X. Z. Xiao, L. X. Chen, K. R. Yu, Z. Wu, S. Q. Li, Q. D. Wang. Active species of CeAl4 in the CeCl3-doped sodium aluminium hydride and its enhancement on reversible hydrogen storage performance, Chemical Communications, 2009: 6857-6859.

[17]      X. Z. Xiao, L. X. Chen, X. H. Wang, S. Q. Li, C. P. Chen, Q. D. Wang. Reversible hydrogen storage properties and favorable co-doping mechanism of the metallic Ti and Zr co-doped sodium aluminum hydride, International Journal of Hydrogen Energy, 2008; 33: 64-73.

[16]      X. Z. Xiao, L. X. Chen, X. L. Fan, H. W. Ge, S. Q. Li, T. Ying, X. H. Wang, C. P. Chen. Influence of Ti-Zr catalysts on reversible hydrogen storage characteristics of NaH/Al composite, Acta Physico-Chimica Sinica, 2008; 24: 423-427.

[15]      X. Z. Xiao, X. H. Wang, L. X. Chen, S. Q. Li, Y. Tang, C. P. Chen. Microstructure and hydrogen storage properties of La1.8Ca0.2Mg14Ni3 + x% Ti composites, Rare Metal Materials and Engineering, 2007; 36: 790-793.

[14]      X. Z. Xiao, L. X. Chen, X. H. Wang, Q. D. Wang, C. P. Chen. The hydrogen storage properties and microstructure of Ti-doped sodium aluminum hydride prepared by ball-milling, International Journal of Hydrogen Energy, 2007; 32: 2475-2479.

[13]      X. Z. Xiao, L. X. Chen, X. H. Wang, S. Q. Li, Q. D. Wang, C. P. Chen. Influence of temperature and hydrogen pressure on the hydriding/dehydriding behavior of Ti-doped sodium aluminum hydride, International Journal of Hydrogen Energy, 2007; 32: 3954-3958.

[12]      X. Z. Xiao, L. X. Chen, X. H. Wang, S. Q. Li, Z. M. Hang, C. P. Chen, Q. D. Wang. Dehydriding properties of Ti or/and Zr-doped sodium aluminum hydride prepared by ball-milling, Physica Scripta, 2007; T129: 95-98.

[11]      X. Z. Xiao, X. H. Wang, L. H. Gao, L. Wang, C. P. Chen. Electrochemical properties of amorphous Mg-Fe alloys mixed with Ni prepared by ball-milling, Journal of Alloys and Compounds, 2006; 413: 312-318.

[10]      X. Z. Xiao, L. X. Chen, X. H. Wang, S. Q. Li, C. P. Chen. Preparation and hydrogen storage characteristics of Ti-NaAlH4 complex hydride, Acta Physico-Chimica Sinica, 2006; 22: 1511-1515.

[9]        X. Z. Xiao, C. P. Chen, X. H. Wang, L. X. Chen. Mechanical ball milling preparation and electrochemical hydrogen storage properties of amorphous Mg-Fe composites, Chemical Journal of Chinese Universities-Chinese, 2006; 27: 116-120.

[8]        X. H. Wang, X. Z. Xiao, L. X. Chen, S. Q. Li, C. P. Chen. Microstructure and hydrogen storage properties of Ti-doped NaH/Al composites prepared by ball-milling, Chemical Journal of Chinese Universities-Chinese, 2006; 27: 1360-1362.

[7]        L. Wang, X. H. Wang, L. X. Chen, C. P. Chen, X. Z. Xiao, L. H. Gao, Q. D. Wang. Electrode properties of La2Mg17 alloy ball-milled with xwt.% cobalt powder (x=50, 100, 150 and 200), Journal of Alloys and Compounds, 2006; 414: 248-252.

[6]        L. Wang, X. H. Wang, L. X. Chen, C. P. Chen, X. Z. Xiao, L. H. Gao, Q. D. Wang. Effects of ball-milling time and Bi2O3 addition on electrochemical performance of ball-milled La2Mg17+200 wt.% Ni composites, Journal of Alloys and Compounds, 2006; 416: 194-198.

[5]        Y. Tang, X. H. Wang, X. Z. Xiao, S. L. Du, Y. Q. Lei. Microstructure and electrochemical properties of amorphous composites of ball-milled Mg2Ni0.95Sn0.05 + x wt% Ni, Rare Metal Materials and Engineering, 2006; 35: 1303-1307.

[4]        S. L. Du, X. H. Wang, L. X. Chen, S. Q. Li, C. P. Chen, Y. Tang, X. Z. Xiao. Microstructure and hydrogen storage properties of Ti1.0VxMn2-x(x=0.6 to 1.6) alloys, Rare Metal Materials and Engineering, 2006; 35: 1285-1288.

[3]        X. Z. Xiao, C. P. Chen, X. H. Wang, L. X. Chen, L. Wang, L. H. Gao. Microstructure and electrochemical properties of amorphous Mg-Fe-Ni hydrogen storage electrode material, Acta Physico-Chimica Sinica, 2005; 21: 565-568.

[2]        L. Wang, X. H. Wang, C. P. Chen, X. Z. Xiao. Electrochemical properties of CeMg12+x%Ni composites (x=0 similar to 200) prepared by ball-milling, Journal of Rare Earths, 2005; 23: 382-385.

[1]        L. H. Gao, C. P. Chen, L. X. Chen, X. H. Wang, J. W. Zhang, X. Z. Xiao, Q. D. Wang. Hydriding/dehydriding behaviors of La1.8Ca0.2Mg14Ni3 alloy modified by mechanical ball-milling under argon, Journal of Alloys and Compounds, 2005; 399: 178-182.

教学与课程

《材料化学》:

  • 材料化学既为材料科学的重要分支又是化学学科的组成部分,本课程设置着重体现出基础性、科学性、先进性和实用性

  • 将所学的化学核心概念灵活运用到实际材料的合成、加工,以及材料结构与性能关联中去,强调基本概念的理解及其在材料研究中的本质规律

  • 通过对功能材料的化学反应机理与性能的关联介绍,试图阐述定量化程度较高的学科体系,培养学生从分子的角度对问题进行思考的能力

  • 融入材料学科发展的新思想、新成果,特别是授课老师在功能材料领域的最新研究成果和实例,以扩展学生的知识面并提高学习兴趣


研究与成果

研究工作主要聚焦于高容量轻金属基配位氢化物的催化机理、纳米调制和多相复合研究,提出了稀土-铝高效催化活性组元,发展系列非晶态过渡金属硼化物催化剂,显著改善了轻金属配位氢化物储氢体系的动力学性能并揭示催化储氢机理;拓展了轻金属储氢体系的纳米限域方法并阐明纳米尺寸效应对其吸放氢热力学的影响机制,开发了高稳定性与高孔隙率的沸石模板碳纳米限域轻金属基储氢材料,突破了纳米限域对配位氢化物体系有效储氢容量的瓶颈制约;构建了新型硼氢化物/氟化石墨纳米多相复合体系,利用氟化石墨对放氢反应焓变进行调控并使硼氢化物复合体系的放氢温度降至200 °C以下,将体系在150 °C内的有效放氢量提高到8.0 wt%。研究结果表明:通过对轻金属配位氢化物储氢材料进行系统深入的“催化机理”、“纳米调制”和“多相复合”研究,可显著改善材料的吸放氢动力学与热力学性能,为发展出具有我国自主知识产权的高性能储氢材料奠定坚实的基础。

专利成果

授权国家发明专利

[1]      肖学章; 陈立新; 范修林 等;铝氢化钠配位氢化物的纳米催化剂及其制备方法与应用  国家发明专利  ZL 200810162217.7

[2]      肖学章; 陈立新; 范修林 等;铝氢化钠和稀土-镍基合金复合储氢材料及其制备方法  国家发明专利  ZL 200810122081.7

[3]      陈立新; 肖学章; 陈长聘 等;用反应球磨直接合成金属配位氢化物储氢材料的方法  国家发明专利  ZL 200810060376.6

[4]      陈立新; 肖学章; 范修林 等;一种贮氢器及其制造方法  国家发明专利  ZL 200810162216.2

[5]      陈立新; 俞凯嵘; 肖学章 等;一种非晶态钛-铜-镍基储氢复合材料及其制备方法  国家发明专利  ZL 200810163647.0

[6]      陈立新; 范修林; 肖学章 等;一种多元轻金属配位铝氢化物储氢材料的制备方法  国家发明专利  ZL 200910096184.5

[7]      陈立新; 范修林; 肖学章 等;铝氢化钠配位氢化物的催化剂及其制备方法  国家发明专利  ZL 200910101843.X

[8]      肖学章; 陈立新; 李  露 等;轻金属复合储氢材料及其制备方法  国家发明专利  ZL 201110070073.4

[9]      陈立新; 陈长聘; 肖学章 等;一种金属氢化物贮氢装置及其制造方法  国家发明专利  ZL 200810162215.

[10]   肖学章,张刘挺,陈立新 等;硼氢化物/氟化石墨纳米复合储氢材料及其制备方法  国家发明专利  ZL 201310218490.8

[11]    陈立新,陈志文,肖学章 等;用于金属氢化物-高压复合储氢的储氢合金  国家发明专利  ZL 201310218535.1

[12]    陈立新,范修林,肖学章 等;LiBH4基储氢材料的纳米硼化物催化剂及其制备、应用  国家发明专利  ZL 201310045940.8 

[13]    肖学章,张刘挺,陈立新 等;一种硼氢化物/氟化石墨纳米复合储氢材料及其制备方法  国家发明专利  ZL 201510218718.2 

[14]    陈立新,翁成才,肖学章 等;一种纳米镁基可逆储氢复合材料及其制备方法  国家发明专利  ZL 201610117766.7 

[15]    肖学章,姜夫雷,陈立新 等;一种非晶镁铝基复合储氢材料及其制备方法   国家发明专利  ZL 201610118105.6 

[16]    刘美佳,罗舶桑,肖学章 等;一种碳纳米管负载金属钴纳米颗粒催化剂及其制备方法和应用  国家发明专利  ZL 201711099891.0 

[17]    刘宇杰,肖学章,陈立新 等;一种镍磷基钠离子电池负极复合材料及其制备方法和应用  国家发明专利  ZL 201711393781.5 

[18]    肖学章,梁子俊,陈立新 等;一种金属负载型催化剂及其制备方法和应用  国家发明专利  ZL 201711393781.5 

[19]    肖学章,梁子俊,董重 等;一种二维非贵金属负载型催化剂及其制备方法和应用  国家发明专利  ZL 201710805409.4 

[20]    肖学章,程昶钧,陈曼 等;一种二维负载型纳米铝氢化物及其制备方法  国家发明专利  ZL 201811197989.4   

[21]    肖学章,程昶钧,陆赟豪 等;一种二维负载型纳米镁氢化物储氢材料的制备方法  国家发明专利  ZL 201811198011.X 

[22]    肖学章,陈文政,陈立新 等;蒲公英状负载型非晶态合金催化剂及其制备方法和应用  国家发明专利  ZL 202010698497.4  

[23]    陈立新,姚振东,肖学章 等;高循环容量ZrCo基氢同位素贮存合金及其制备和应用  国家发明专利  ZL 202011127224.0   

[24]    陈立新,梁赵青,肖学章 等;具有正交晶型结构高循环稳定性能ZrCo基氢同位素贮存合金及其制备和应用  国家发明专利  ZL 202011125056.1 

[25]    肖学章,黄子薇,陈浩冬 等;珊瑚状三维负载型非贵金属合金催化剂及其制备和应用  国家发明专利  ZL 202110379332.5

[26]    陈立新,梁赵青,肖学章 等;具有稳定的同晶型吸/放氢反应的ZrCo基高熵金属间化合物及其制备和应用  国家发明专利  ZL 202110449700.9  

[27]    肖学章,朴明远,陈立新 等;加氢站用固态储氢材料及其制备方法与应用  国家发明专利  ZL 202111088130.1

[28]  肖学章,何佳桓,黄子薇 等;一种多维度微纳非贵金属复合催化剂及其制备和应用  国家发明专利  ZL 20211046947

[29]  肖学章,周盼盼,陈立新 等;低滞后高抗粉化能力的固态稀土储氢合金及其制备和应用  国家发明专利  ZL 202111326864.9

[30]   肖学章,曹子鸣,陈立新 等;基于储氢材料的级联型静态氢增压系统、增压方法  国家发明专利  ZL 202111412527.1

[31]  肖学章,何佳桓,黄子薇 等;乒乓菊状多孔微纳非贵金属间化合物催化剂及其制备和应用  国家发明专利  ZL 202210064074.6

授权实用新型专利 

[1]      陈立新; 肖学章; 范修林 等;一种贮氢器  实用新型专利  200820168122.1 

[2]      陈立新; 陈长聘; 肖学章 等;一种金属氢化物贮氢装置  实用新型专利  200820168121.7


奖励荣誉

2021年获浙江大学材料学院“优秀党务工作者”

2020年获浙江大学材料学院“华灿光电奖教金”

2018年获浙江大学材料学院“院级先进个人”

2016年获浙江大学“自研自制仪器设备优秀成果奖”

2015年入选浙江大学“求是青年学者”

2014年获浙江大学“柯元恒实验奖教金”

2013年Included in "Who's Who in the World", 30th edition, Marquis

2012年获浙江大学材料系 “Renesola青年才俊奖”


实验室介绍

01-1537172499-822641.png