人才队伍

教学科研人员

张林
张林 教授|博士生导师

电话: 0571-88813665

邮箱: zhlin@zjut.edu.cn

地址: 浙江工业大学材料楼A315

简介

学术经历:

    1988.9 - 2000.7:山东大学,学士、硕士、博士

    2000.9 - 2002.3:南京大学,博士后

    2002.4 - 2011.6:日本产业技术综合研究所,JSPS研究员、研究员

    2011.7 - 至    今:浙江工业大学材料成型所,教授、博导、所长

 

科研经验

研究团队目前主要从事氢能领域中高压氢系统承载件服役性能、失效机理、损伤检测和安全评价方法的研究,是我国最早开展金属材料高压氢脆研究的团队之一。

从2002年至2011年在日本产业技术综合研究所从事高压氢环境下氢能系统用结构材料的安全性研究,参加日本新能源·产业技术开发机构(NEDO)的多项“高压氢环境下金属材料服役安全”项目,与日立金属、马自达、长野计器等公司合作开发了多种高压氢系统专用产品。

2011年回国后,先后承担国家重点研发、863计划课题、973计划课题、国家自然科学基金等10多项省部级科研项目。研究期间,发表100多篇高水平学术论文,授权20 多项国家发明专利,参与制定3项高压氢气环境材料测试方面的国家标准。研究团队掌握了低成本高强度低氢脆结构材料、氢环境专用载荷传感器、高压氢系统密封等多项核心技术。在高压氢系统承载件氢致损伤机理与评价、承载件缺陷检测与监控、高压氢能储输等方面取得了多项在国内外有重要影响的研究成果。


学术兼职:

中国腐蚀与防护协会理事,中国环境敏感断裂专业委员会委员,浙江省失效分析协会理事,中国可再生能源学会会员,中国氢能标准化技术委员会委员。

研究方向

氢能安全

金属增材制造

材料环境失效及控制

材料成型仿真与模拟

有色金属精密成型

科研项目

1. 国家重点研发计划“加氢关键部件安全性能测试技术及装备研究”子课题;

2. 973项目“高压氢系统大型承载件设计制造的基础研究”子课题;

3. 863项目“高压储氢、输氢、加氢安全保障技术装备与应用示范”子课题;

4. 国家面上基金“选区激光熔化增材制造不锈钢的氢脆机理及高强度抗氢脆设计研究”;

5. 国家面上基金“高压环境氢与交变荷载耦合作用下不锈钢多尺度损伤研究”;

6. 浙江省尖兵研发攻关计划项目“无级变速器(CVT)用钢带制造技术研发”;

7. 浙江省重点研发计划“热熔高性能铜包钢接触线复合材料的研发及产业化”子课题; 

8. 浙江省基金“激光增材制造奥氏体不锈钢的氢脆机理和抗氢脆设计研究”;

9. 浙江省基金“应变强化奥氏体不锈钢在高压氢环境中多尺度疲劳损伤机理研究”

10. 中石化项目“新疆煤制气外输管道工程介质组分对X80管材的影响及适用性评价”;

11. 国电投项目“掺氢天然气环境下的管道材料性能研究”;

12. 西安管材所“煤制气对输送管道用X80管材力学性能影响及机理研究”。

科研成果

近期发表代表论文:

1. The cellular boundary with high density of dislocations governed the strengthening mechanism in selective laser melted 316L stainless steel, Materials Science and Engineering A, 2021, 799: 140279.

2. The dependence of fatigue crack growth on hydrogen in warm-rolled 316 austenitic stainless steel, International Journal of Hydrogen Energy, 2021, 46: 12348-12360.

3. The evolution of oxygen-rich nanoparticle and its effect on the mechanical property in selective laser melted 304L stainless steel, Materials Science and Engineering A, 2021, 827: 142009.

4. The dependence of hydrogen embrittlement on hydrogen transport in selective laser melted 304L stainless steel, International Journal of Hydrogen Energy, 2021, 46: 16153-16163.

5. Hydrogen embrittlement resistance of TWIP (twinning-induced plasticity) steel in high pressure hydrogen environment, International Journal of Fatigue, 2021, 151: 106362.

6. Warm deformation enhances strength and inhibits hydrogen induced fatigue crack growth in metastable 304 and 316 austenitic stainless steels, Materials Science and Engineering A, 2021, 818: 141415.

7. Anomalous evolution of corrosion behaviour of warm-rolled type 304 austenitic stainless steel, Corrosion Science, 2020, 154: 268-276.

8. Coupling effect of grain boundary and hydrogen segregation on dislocation nucleation in bi-crystal nickel, International Journal of Hydrogen Energy, 2020, 45: 20021-20031.

9. Sulphide stress cracking behaviour of the dissimilar metal welded joint of X60 pipeline steel and Inconel 625 alloy, Corrosion Science, 2020, 110: 242-252.

10. Improvement of corrosion resistance of SS316L manufactured by selective laser melting through subcritical annealing, Corrosion Science, 2020, 164: 108353

11. Improved resistance to hydrogen environment embrittlement of warm-deformed 304 austenitic stainless steel in high-pressure hydrogen atmosphere, Corrosion Science, 2020, 148: 159-170.

12. Enhanced hydrogen embrittlement of low-carbon steel to natural gas/hydrogen mixtures, Scripta Materialia, 2020,189: 67-71.

13. Enhanced Corrosion Resistance of Additively Manufactured 316L Stainless Steel After Heat Treatment, Journal of the Electrochemical Society, 2020, 167: 141504.

14. Hydrogen effect on nanoindentation creep of austenitic stainless steel: A comparative study between primary creep stage and steady-state creep stage, International Journal of Hydrogen Energy, 2019, 44: 22576-22583.

15. Effect of hydrogen and strain rate on nanoindentation creep of austenitic stainless steel, International Journal of Hydrogen Energy, 2019, 44: 1253-1262.

16. Effect of pre-strain on hydrogen embrittlement of metastable austenitic stainless steel under different hydrogen conditions, International Journal of Hydrogen Energy, 2019, 44: 26036-26048.

17. Formation of strain-induced martensite in selective laser melting austenitic stainless steel, Materials Science and Engineering A, 2019, 740: 420-426.

18. The influence of copper on the stress corrosion cracking of 304 stainless steel, Applied Surface Science, 2019, 478: 492-498.

19. Dependence of strain rate on hydrogen-induced hardening of austenitic stainless steel investigated by nanoindentation, International Journal of Hydrogen Energy, 2019, 44: 14055-14063.

20. Effects of internal hydrogen and surface-absorbed hydrogen on the hydrogen embrittlement of X80 pipeline steel, International Journal of Hydrogen Energy, 2019, 44: 22547-22558.

21. Effects of alpha ' martensite and deformation twin on hydrogen-assisted fatigue crack growth in cold/warm-rolled type 304 stainless steel, International Journal of Hydrogen Energy, 2018, 43: 3342-3352.

22. Hydrogen effects on X80 pipeline steel in high-pressure natural gas/hydrogen mixtures, International Journal of Hydrogen Energy, 2017, 42: 7404-7412.

23. Density power law and structures of metallic glasses, Acta Materialia, 2017, 141: 75-82.

24. Hydrogen effect on the deformation evolution process in situ detected by nanoindentation continuous stiffness measurement, Materials Characterization, 2017, 127: 35-40.

25. Effects of environmental conditions on hydrogen permeation of X52 pipeline steel exposed to high H2S-containing solutions, Corrosion Science, 2014, 89: 30-37.

26. Abnormal effect of nitrogen on hydrogen gas embrittlement of austenitic stainless steels at low temperatures, International Journal of Hydrogen Energy, 2016, 41: 13777-13785.

27. An apparatus for detecting hydrogen desorption from metals during deformation, Vacuum, 2016, 128: 128-132.

28. Dependence of hydrogen embrittlement on hydrogen in the surface layer in type 304 stainless steel, International Journal of Hydrogen Energy, 2014, 39: 20578-20584.

29. In-situ characterization of strain localization and strain-induced martensitic transformation in metastable austenitic steels by deformation induced hydrogen and argon releases, Journal of Applied Physics, 2011, 110: 033540.

30. Atomic structure of interface between monolayer Pd film and Ni(111) determined by low-energy electron diffraction and scanning tunneling microscopy, Journal of Applied Physics, 2010, 108: 103521.

31. Characterization of hydrogen-induced crack initiation in metastable austenitic stainless steels during deformation, Journal of Applied Physics, 2010, 108: 063526.

32. Hydrogen effects on localized plasticity in SUS310S stainless steel investigated by nanoindentation and atomic force microscopy, Japanese Journal of Applied Physics, 2009, 48: 08JB08.

33. Hydrogen-enhanced dislocation activity and vacancy formation during nanoindentation of nickel, Physical Review B,2009, 80: 094113.

34. Growth and structural transition of Fe ultrathin films on Ni(111) investigated by LEED and STM, Physical Review B, 2009, 79: 085406.

35. Effect of nickel equivalent on hydrogen gas embrittlement of austenitic stainless steels based on type 316 at low temperatures, Acta Materialia, 2008, 56: 3414-3421.

36. Atomic force microscopy measurement of the Young's modulus and hardness of single LaB6 nanowires, Applied Physics Letters, 2008, 92: 173121.

 

近期授权发明专利:

1. 一种高强度抗氢脆的新型奥氏体不锈钢材料的制备方法;

2. 用于SLM成形不锈钢零件的表面处理液和表面处理装置;

3. 用于3D打印不锈钢件零件的表面处理液及表面处理装置;

4. 再生Al-Si系铝合金除铁方法;

5. 再生Al-Cu-Si系铝合金除铁方法;

6. 超高压氢环境轻便式环境力学试验装置;

7. 波浪发电装置及方法;

8. 一种波浪发电装置及控制方法;

9. 高温高压腐蚀氢渗透动力学测试装置及测试方法;

10. 高压氢渗透测试装置及测试方法;

11. 高压氢渗透动力学测试装置及测试方法;

12. 高压氢环境下的载荷传感器;

13. 高压硫化氢环境用电阻应变式载荷传感器;

14. 温度可调材料的氢释放测试装置及测试方法;

15. 材料形变过程中的氢释放测试装置及测试方法;

16. 高压氢环境国产金属材料性能数据库管理软件(软件著作权)。