论文:
1. The regulation of dislocation and precipitated phase improving hydrogen embrittlement resistance of pipeline steel in high pressure hydrogen environment. International Journal of Fatigue. IF:6, 2024;一作;
2. Hydrogen embrittlement resistance of TWIP (twinning-induced plasticity) steel in high pressure hydrogen environment. International Journal of Fatigue. IF:6, 2021, 引用14; 一作
3. Suppressing hydrogen embrittlement of a CrCoNi medium-entropy alloy by triggering co-segregation of carbon, boron, and Cr. Corrosion Science. IF:8.3, 2024; 通讯
4. Effect of subcritical-temperature heat treatment on corrosion of SLM SS316L with different process parameters.Corrosion Science. IF:8.3, 2023, 引用9; 一作
5. Hydrogen uptake induced by CO2 enhances hydrogen embrittlement of iron in hydrogen blended natural gas. Corrosion Science. IF:8.3, 2022, 引用16;一作
6. Improvement of corrosion resistance of SS316L manufactured by selective laser melting through subcritical annealing. Corrosion Science. IF:8.3, 2020, 引用86;一作
7. Anomalous evolution of corrosion behaviour of warm-rolled type 304 austenitic stainless steel. Corrosion Science. IF:8.3, 2019, 引用67;共同一作
8. Sulphide stress cracking behaviour of the dissimilar metal welded joint of X60 pipeline steel and Inconel 625 alloy. Corrosion Science. IF:8.3, 2016, 引用45; 一作
9. The Impact of Impurity Gases on the Hydrogen Embrittlement Behavior of Pipeline Steel in High-Pressure H2 Environments. Materials. IF:3.1, 2024;
10. Fracture failure analysis and research on super-large-diameter roll. Engineering Failure Analysis. IF:4, 2023, 引用3; 一作
11. Effect of manganese content on the hydrogen embrittlement of twinning-induced plasticity (TWIP) steels under hydrogen charging and hydrogen environment. Materials Science and Engineering A. IF:6.4, 2022, 引用15;一作
12. Enhanced Corrosion Resistance of Additively Manufactured 316L Stainless Steel After Heat Treatment. Journal of the Electrochemical Society. IF:4.1, 2020, 引用40; 一作
13. The influence of copper on the stress corrosion cracking of 304 stainless steel. Applied Surface Science. IF:6.7, 2019, 引用30; 唯一通讯
14. Effects of internal hydrogen and surface-absorbed hydrogen on the hydrogen embrittlement of X80 pipeline steel. International Journal of Hydrogen Energy. IF:7.2, 2019,引用87; 一作
15. Effect of pre-strain on hydrogen embrittlement of metastable austenitic stainless steel under different hydrogen conditions. International Journal of Hydrogen Energy. IF:7.2, 2019, 引用55; 一作
16. Abnormal effect of nitrogen on hydrogen gas embrittlement of austenitic stainless steels at low temperatures. International Journal of Hydrogen Energy. IF:7.2, 引用33, 2016年. 一作
发明专利:
(1) 王冰清; 张林; 张雯丽; 张万亮; 周成双 ; 用于煤制气环境中的溅射薄膜敏感元件, 2022-10-04, 中
国, ZL202011237585.0 (专利)
(2) 俞海波; 张林; 张雯丽; 张万亮; 周成双 ; 用于潮湿水环境中的载荷传感器元件, 2022-08-05, 中
国, ZL202011237588.4 (专利)
(3) 施巧英; 王雪菡; 邢百汇; 许峥; 傅王秦; 严豪杰; 吴芳月; 黄啟德; 周成双; 张林 ; 一种高强度抗
氢脆的新型奥氏体不锈钢材料的制备方法, 2021-05-18, 中国, ZL201910267044.3 (专利)
(4) 周成双; 王雪函; 吴恒毅; 张盛盛; 胡诗音; 嵇伟明; 张林 ; 轻便式高温高压力学试验装置, 2019-
10-25, 中国, ZL201710197983.6 (专利)
(5) 周成双; 庞士鹏; 张林 ; 再生Al-Mg-Si系铝合金除铁方法, 2019-04-26, 中国,
ZL201710874459.8 (专利)
(6) 张林; 吴恒毅; 王雪函; 张盛盛; 方瑛; 嵇伟明; 胡诗音; 周成双 ; 超高压氢环境轻便式环境力学试
验装置, 2019-10-25, 中国, ZL201710197433.4 (专利)
(7) 周成双; 张林; 黄秋彦 ; 高温高压腐蚀氢渗透测试装置及测试方法, 2017-05-17, 中国,
ZL201410718546.0 (专利)
(8) 周成双; 张林; 黄秋彦 ; 高压氢渗透测试装置及测试方法, 2017-06-27, 中国,
ZL201410717532.7 (专利)
(9) 张林; 占生根; 周成双; 陈兴阳 ; 高压氢环境下的载荷传感器, 2016-06-29, 中国,
ZL201410205215.7 (专利)
(10) 周成双; 张林; 占生根; 陈兴阳 ; 高压硫化氢环境用电阻应变式载荷传感器, 2016-05-11, 中国,
ZL201410203168.2 (专利)