人才队伍

教学科研人员

王凯
王凯 “百人计划”研究员|博士生导师

电话: +86-571-87953782

邮箱: kaiwang19@zju.edu.cn

地址: 浙江大学玉泉校区低温楼401A

简介

王凯,工学博士,浙江大学“百人计划”研究员、博士生导师,国家级青年人才计划入选者。

2014年毕业于浙江大学能源工程学院制冷及低温工程专业,获博士学位;2014年至2017年,在新加坡南洋理工大学能源研究所(Energy Research Institute @ NTU)和机械与航空工程学院(School of Mechanical and Aerospace Engineering)任博士后;2018年至2019年,在英国帝国理工学院化学工程学院清洁能源过程实验室(Clean Energy Processes (CEP) Laboratory)任博士后,于2019年9月全职回到浙江大学工作。

主要从事液氢储运及加注、低品位热能回收等方向的基础和应用研究,近年来围绕液氢制取、储运和加注方向,重点开展大规模氢液化及加注流程、正仲氢连续催化转化式换热器、高效液氢存储、高压液氢泵相关研究。承担参与国家重点研发计划项目、国家自然科学基金、浙江省自然科学基金等纵向项目和企业横向项目十余项。编著英文专著1本、参与撰写专著章节2章,在能源领域权威期刊发表SCI论文60余篇,获授权中国发明专利10余项、美国专利1项。荣获国际制冷学会青年奖萨迪·卡诺奖(Sadi Carnot Award),为国际制冷领域授予热力学方向青年学者的最高奖项。

受邀担任国际权威SCI期刊 Applied Thermal Engineering 编委及主编助理编辑、Journal of Zhejiang University-SCIENCE A青年编委、低温领域中文核心期刊《真空与低温》青年编委,任中国制冷学会第十届理事会青年工作委员会委员、中国机械工业教育协会高等工程教育学科专业教学委员会委员(制冷与低温工程学科)。曾任国际低温工程和低温材料大会ICEC28/ICMC2022大会秘书长,热驱动循环大会HPC2018、国际应用能源大会ICAE2018和ICEC28/ICMC2022的分会场主席,可再生热能管理国际大会SusTEM2017学术委员会委员。为英国工程和自然科学研究委员会(EPSRC)Standard Grants基金、EPSRC Open Fellowship、英国研究与创新署(UKRI)Future Leaders Fellowships、新加坡国家自然科学基金等项目评审专家。

学习及工作经历

2005.09 – 2009.06      浙江大学,能源与环境系统工程专业,本科

2009.09 – 2014.09      浙江大学,制冷及低温工程专业,博士

2014.12 – 2017.12      新加坡南洋理工大学,能源研究所、机械与航空工程学院,博士后

2018.01 – 2019.09      英国帝国理工学院,化学工程学院,博士后

2019.09 – 至今            浙江大学,能源工程学院,“百人计划”研究员

主要研究方向

  • 氢液化、储运及加注

  • 低温过程节能

  • 低品位热能和冷能利用

    热声斯特林热机

教学工作

一、主讲本科生和研究生课程

[1]   《能源与环境系统工程概论》,能源与环境系统工程专业本科生,专业必修课

[2]   《工程热力学(甲)》,能源与环境系统工程专业本科生,专业必修课

[3]   《高等传热学》,能源与动力类专业硕士生,专业学位课(中文班、英文班)

二、指导本科生科研训练与竞赛

[1]   马行豪、陈一佳、王贤、宋晨、王子朋、谢楚涛、周涛,“捕热补冷”——基于插片式微通道换热器的冷藏车尾气余热制冷系统,第十五届大学生节能减排社会实践与科技竞赛,全国一等奖、浙江大学一等奖,2022

[2]   吴锦鹏、祝海涛、缪兴盛、杨湛新、李宛轩,“水到热成”——空气能热水器的废水利用创新设计,第十五届大学生节能减排社会实践与科技竞赛,浙江大学三等奖,2022

[3]   杜涵涵,王一涵,王静蕾,姚涵,王瑶,阿格莱亚斯特林液体活塞水泵,第十四届大学生节能减排社会实践与科技竞赛,全国三等奖、浙江大学二等奖,2021

[4]   李海龙,余鸿锦,方兴煜,基于太阳能光伏和膜分离协同作用的高效电力和淡水联产系统研究,国家级大学生创新创业训练计划,2020-2021

三、其他

[1]   中国机械工业教育协会高等工程教育学科专业教学委员会(制冷与低温工程学科),委员,2021


科研项目

承担或参与的主要科研项目

[1]  低温空分系统中基于压缩余热利用的压缩过程自增效机理研究,国家自然科学基金委员会青年科学基金项目,2022-2024,主持

[2]  换热与催化集成式低温氢气换热器设计方法与制造工艺,国家重点研发计划项目,2022-2025,子课题负责人

[3]  可再生电/热驱动型制冷储冷一体化技术的协同开发,国家重点研发计划“政府间国际科技创新合作”重点专项项目,2021-2024,浙江大学方负责人

[4]  液氢加注全流程多时序瞬态仿真与动态特性研究,浙江省自然科学基金,2021-2023,主持

[5]  大型国产氢气液化系统的流程、安全及流量调节关键技术研究,浙江省重点研发计划项目子课题,2020-2022,参与

[6]  高压液氢活塞泵,企业横向项目,2021-2022,主持

[7]  用于氢液化的透平膨胀机研究,企业横向项目,2021-2023,主持

[8]  “800万吨级天然气液化工艺包”热力学评价分析研究,企业横向项目,2021-2022,主持

[9]  高效液氢存储系统开发,企业横向项目,2021-2022,参与

研究论文

更多信息请见Google ScholarResearchGate

一、专著章节 (Book Chapters)

[1]     Christos N. Markides, Kai Wang, Power Generation Technologies for Low-Temperature and Distributed Heat, 2023, Publisher: Elsevier.

[2]     Y. Tripanagnostopoulos, G. Huang, K. Wang, C.N. Markides, Photovoltaic/thermal Solar Collectors, Book chapter, in Comprehensive Renewable Energy (Second Edition), Volume 3, p.294-345, 2022, Publisher: Elsevier.

[3]     K. Wang†, Z. Qin†, W. Tong†, C.Z. Ji*, Thermal Energy Storage for Solar Energy Utilization: Fundamentals and Applications, Book chapter, in Renewable Energy - Resources, Challenges and Applications, 2020. Publisher: IntechOpen.

 二、期刊论文 (Journal Papers)

[1]       C.C. Wan, S.L. Zhu, C.Y. Shi, S.R. Bao, X.Q. Zhi, L.M. Qiu, K. Wang*, Numerical Simulation on Pressure Evolution Process of Liquid Hydrogen Storage Tank with Active Cryogenic Cooling, International Journal of Refrigeration, 2022 [Accepted].

[2]       X.Q. Zhi, G.L. Li, Y.X. Teng, K. Wang, L.M. Qiu*, Study on the regenerative performance of pressed stainless-steel wire screens used in a pulse tube refrigerator working around 20 K, Applied Thermal Engineering, 2022 [Accepted].

[3]       M. Herrando, K. Wang, G. Huang, T. Otanicar, O.B. Mousa, R.A. Agathokleous, Y.L. Ding, S. Kalogirou, N. Ekins-Daukes, R.A. Taylor, C.N. Markides*, A review of solar hybrid photovoltaic-thermal (PV-T) collectors and systems, Progress in Energy and Combustion Science, 2022 [Accepted].

[4]       J.F. Li, K. Wang, C.J. Gu, L.M. Qiu*, An analysis of the exhaust process of cryogenic nitrogen gas from a cryogenic wind tunnel with an inclined exit, Journal of Zhejiang University-SCIENCE A, 2022 [Accepted].

[5]       H.Y. Jiang, Y.Y.M. Rong, X. Zhou, S. Fang, K. Wang, X.Q. Zhi, L.M. Qiu*, Performance assessment of an organic Rankine–Vapor compression cycle (ORC-VCR) for Low-Grade compression heat recovery, Energy Conversion and Management 275, 116492, 2022.

[6]       Z.Y. Luo, X.Q. Zhi*, L.M. Qiu, K. Wang, S.L. Zhu, B. Tian, Visualization experiment on cryogenic boiling heat transfer and recovery characteristics in the first and second quench of RSFCLs, Cryogenics 128, 103586, 2022.

[7]       S.L. Zhu, J.J. Teng, X.Q. Zhi, S.R. Bao, L.M. Qiu, K. Wang*, Numerical study on comprehensive performance of flow and heat transfer coupled with ortho-para hydrogen conversion, International Journal of Heat and Mass Transfer 201, 123653, 2022.

[8]       C.Y. Shi, S.L. Zhu, C.C. Wan, S.R. Bao, X.Q. Zhi, L.M. Qiu, K. Wang*, Performance analysis of vapor-cooled shield insulation integrated with para-ortho hydrogen conversion for liquid hydrogen tanks, International Journal of Hydrogen Energy 48(8), 3078-3090, 2022.

[9]       A.A. Al Kindi, P. Sapin, A.M. Pantaleo, K. Wang, C.N. Markides*, Thermo-economic analysis of steam accumulation and solid thermal energy storage in direct steam generation concentrated solar power plants, Energy Conversion and Management 274, 116222, 2022.

[10]    H.W. Zhang, X. Zhou, H.Y. Jiang, S. Fang, X.Q. Zhi, L.M. Qiu, K. Wang*, Performance limit of gas compression processes enhanced by self-utilization of compression waste heat, Energy Conversion and Management 273, 116414, 2022.

[11]    X. Zhou, H.W. Zhang, S. Fang, Y.Y.M. Rong, Z.R. Xu, H.Y. Jiang, K. Wang*, Xiaoqin Zhi, Limin Qiu, Off-design performance analysis with various operation methods for ORC-based compression heat recovery system in cryogenic air separation units, Energy 261, 125364, 2022.

[12]    S. Fang, Z.R. Xu, X. Zhou, H.W. Zhang, X.Q. Zhi, L.M. Qiu, K. Wang*, Cascade deep dehumidification with integrated direct-contact cooling and liquid desiccant absorption, Energy Conversion and Management 268, 115959, 2022.

[13]    X. Zhou, H.W. Zhang, Y.Y.M. Rong, J. Song, S. Fang, Z.R. Xu, X.Q. Zhi, K. Wang*, L.M. Qiu, C.N. Markides, Comparative study for air compression heat recovery based on organic Rankine cycle (ORC) in cryogenic air separation units, Energy 255, 124514, 2022.

[14]    S.L. Zhu, Z.Y. Luo, X.Q. Zhi, K. Wang, L.M. Qiu*, Experimental study and numerical simulation of nitrogen vapor condensation on microstructure surface, Applied Thermal Engineering, 118332, 2022.

[15]    T. Wei, X.J. Tao, J.C. Lin, X.Q. Zhi*, K. Wang, L.M. Qiu, The effect of the aftercooler on the regenerator temperature non-uniformity in a high-capacity pulse tube cryocooler, Applied Thermal Engineering 209, 118245, 2022.

[16]    R.M. Elavarasan*, V. Mudgal, L. Selvamanohar, K. Wang, G. Huang*, G.M. Shafiullah, C.N. Markides, K.S. Reddy, M. Nadarajah, Pathways toward high-efficiency solar photovoltaic thermal management for electrical, thermal and combined generation applications: A critical review, Energy Conversion and Management 255, 115278, 2022.

[17]    G. Harikumar, L. Shen, K. Wang, S. Dubey, F. Duan*, Transient thermofluid simulation of a hybrid thermoacoustic system, International Journal of Heat and Mass Transfer 183, 122181, 2022.

[18]    X. Zhou, X.Q. Zhi*, X. Gao, H. Chen, S.L. Zhu, K. Wang, L.M. Qiu, X.B. Zhang, Cavitation evolution and damage of liquid nitrogen with globe valve, Journal of Zhejiang University-Science A 23, 101-117, 2022.

[19]    S. Fang, Z.R. Xu, H.W. Zhang, Y.Y.M. Rong, X. Zhou, X.Q. Zhi, K. Wang*, C.N. Markides, L.M. Qiu, High-performance multi-stage internally-cooled liquid desiccant dehumidifier for high gas-liquid flow ratios, Energy Conversion and Management 250, 114869, 2021.

[20]    J. Song, Y.X. Wang, K. Wang*, J.F. Wang, C.N. Markides*, Combined supercritical CO2 (SCO2) cycle and organic Rankine cycle (ORC) system for hybrid solar and geothermal power generation: Thermoeconomic assessment of various configurations, Renewable Energy 174, 1020-1035, 2021.

[21]    S.L. Zhu, X.Q. Zhi*, C.J. Gu, K. Wang, L.M. Qiu, Enhancing heat transfer performance of nitrogen condensation on vertical plate with microstructure, International Journal of Heat and Mass Transfer 172, 121219, 2021.

[22]    G. Xiao*, H. Qiu, K. Wang, J.T. Wang, Working Mechanism and Characteristics of Gas Parcels in the Stirling Cycle, Energy 229, 120708, 2021.

[23]    G. Huang, K. Wang, S. Riera-Curt, B. Franchetti, I. Pesmazoglou, C.N. Markides*, On the performance of concentrating fluid-based spectral-splitting hybrid PV-thermal (PV-T) solar collectors, Renewable Energy 174, 590-605, 2021.

[24]    X.Q. Zhi, R.F. Cao, C. Huang, K. Wang, L.M. Qiu*, Theoretical and experimental investigations on HoCu2 and Gd2O2S as regenerative materials at 4-20 K, Applied Thermal Engineering 192, 116921, 2021.

[25]    L. Shen, G. Harikumar, K. Wang, F. Duan*, Flow visualization in a hybrid thermoacoustic system, Experimental Thermal and Fluid Science 125, 110374, 2021.

[26]    S. Fang, K. Wang*, X.Q. Zhi, L.M. Qiu, Multi-stage internally-cooled membrane-based liquid desiccant dehumidifiers: Driving-force based insights into structural improvement, International Journal of Heat and Mass Transfer 171, 121068, 2021.

[27]    X. Zhou, Y.Y.M. Rong, S. Fang, K. Wang*, X.Q. Zhi, L.M. Qiu, X.L. Chi, Thermodynamic analysis of an organic Rankine–vapor compression cycle (ORVC) assisted air compression system for cryogenic air separation units, Applied Thermal Engineering 189, 116678, 2021.

[28]    H. Qiu, K. Wang, P.F. Yu, M.J. Ni, G. Xiao*, A third-order numerical model and transient characterization of a β-type Stirling engine, Energy 222, 119973, 2021.

[29]    Y.H. Qi, X.Q. Zhi*, H.Y. Zhang, K. Wang, L.M. Qiu, Mechanisms of trace water vapor frosting on a cryogenic surface in nitrogen gas flow, International Journal of Heat and Mass Transfer 169, 120898, 2021.

[30]    G. Huang, K. Wang, C.N. Markides*, Efficiency limits of concentrating spectral-splitting hybrid photovoltaic-thermal (PV-T) solar collectors and systems, Light: Science & Applications 10, 28, 2021.

[31]    S.L. Zhu, X.Q. Zhi*, C.J Gu, L.M. Qiu, K. Wang, Characteristic analysis of fluctuating liquid film flow behavior and heat transfer in nitrogen condensation, Applied Thermal Engineering 184, 116249, 2021.

[32]    G. Chen, Y.F. Wang, K. Wang, Z.B. Yu, L.H. Tang*, Large eddy simulation of thermally induced oscillatory flow in a thermoacoustic engine. Applied Energy 276, 115458, 2020.

[33]    K. Wang*, A.M. Pantaleo, M. Herrando, M. Faccia, I. Pesmazoglou, B.M. Franchetti, C.N. Markides, Spectral-splitting hybrid PV-thermal (PVT) systems for  combined heat and power provision to dairy farms, Renewable Energy 159, 1047-1065, 2020.

[34]    S.M. Fan, L.S. Jiao, K. Wang, F. Duan*, Pool boiling heat transfer of saturated water on rough surfaces with the effect of roughening techniques, International Journal of Heat and Mass Transfer 159, 120054, 2020.

[35]    J. Song, X.Y. Li, K. Wang, Christos N. Markides*, Parametric optimization of a combined supercritical CO2 (S-CO2) cycle and organic Rankine cycle (ORC) system for internal combustion engine (ICE) waste-heat recovery, Energy Conversion and Management 218, 112999, 2020.

[36]    S. Fang, X.W. Cheng, X.Q. Zhi*, L.M. Qiu, K. Wang, Numerical study on the moisture transfer characteristics of membrane-based liquid desiccant dehumidifiers: Resistance distribution and concentration polarization, International Journal of Heat and Mass Transfer 155, 119877, 2020.

[37]    Y.Y.M. Rong, X.Q. Zhi, K. Wang, X. Zhou, X.W. Cheng, L.M. Qiu*, X.L. Chi, Thermoeconomic analysis on a cascade energy utilization system for compression heat in air separation units, Energy Conversion and Management 213, 112820, 2020.

[38]    G. Huang, S. Riera-Curt, K. Wang*, C.N. Markides*, Challenges and Opportunities for Nanomaterials in Spectral Splitting for High-Performance Hybrid Solar Photovoltaic-Thermal Applications: A Review, Nano Materials Science 2(3), 183-203, 2020.

[39]    X.W. Cheng, Y.Y.M. Rong, X. Zhou, C.J. Gu, X.Q. Zhi*, L.M. Qiu, Y.J. Yuan, K. Wang, Performance analysis of a multistage internal circulation liquid desiccant dehumidifier, Applied Thermal Engineering 172, 115163, 2020.

[40]    K. Wang*, M. Herrando, A.M. Pantaleo, C.N. Markides, Technoeconomic assessments of hybrid photovoltaic-thermal vs. conventional solar energy systems: Case studies in heat and power provision to sports centres. Applied Energy 254, 113657, 2019.

[41]    C.K. Unamba, P. Sapin*, X.Y. Li, J. Song, K. Wang, G.Q. Shu, H. Tian, C.N. Markides, Operational optimisation of a non-recuperative 1-kWe ORC engine prototype. Applied Science 9, 3024, 2019.

[42]    M. Herrando*, A.M. Pantaleo, K. Wang, C.N. Markides, Solar combined cooling, heating and power systems based on hybrid PVT, PV or solar-thermal collectors for building applications. Renewable Energy 143, 637-647, 2019.

[43]    G. Harikumar, K.H. Hob, K. Wang, S. Dubey, F. Duan*, Thermoacoustic energy conversion in a square duct. Energy Procedia 158, 1811-1816, 2019.

[44]    A.A. Harraza, J. Freeman, K. Wang, N.M. Dowell, C.N. Markides*, Diffusion-absorption refrigeration cycle simulations in gPROMS using SAFT-γ Mie. Energy Procedia 158, 2360-2365, 2019.

[45]    K. Wang*, M. Herrando, A.M. Pantaleo, C.N. Markides, Thermoeconomic assessment of a PV/T combined heating and power system for University Sport Centre of Bari. Energy Procedia 158, 1229-1234, 2019.

[46]    J.F. Li, K. Wang, X.B. Zhang, X. Zhou, L.M. Qiu*, A parametric sensitivity study by numerical simulations on plume dispersion of the exhaust from a cryogenic wind tunnel. Journal of Zhejiang University-SCIENCE A 19 (10), 746-757, 2018.

[47]    M.J. Song, K. Wang, S.C. Liu*, S. Deng, B. Dai, Z. Sun, Techno-economic analysis on frosting and defrosting operations of an air source heat pump unit applied in a typical cold city, Energy and Buildings 162, 65-76, 2018.

[48]    K. Wang, S. Dubey, F.H. Choo, F. Duan*, Thermoacoustic Stirling power generation from LNG cold energy and low-temperature waste heat, Energy 127, 280-290, 2017.

[49]    K. Wang, L.M. Qiu*, Numerical analysis on a four-stage looped thermoacoustic Stirling power generator for low temperature waste heat. Energy Conversion and Management 150, 830-837. 2017.

[50]    S.R. Bao, R.P. Zhang, K. Wang, X.Q. Zhi, L.M. Qiu*, Free-surface flow of liquid oxygen under non-uniform magnetic field, Cryogenics 81, 76-82, 2016.

[51]    K. Wang, S. Dubey, F.H. Choo, F. Duan*, A transient one-dimensional numerical model for kinetic Stirling engine, Applied Energy 183, 775-790, 2016.

[52]    K. Wang, S. Sanders, S. Dubey, F.H. Choo, F. Duan*, Stirling cycle engines for recovering low and moderate temperature heat: a review, Renewable and Sustainable Energy Reviews 62, 89-108, 2016.

[53]    K. Wang, J. Zhang, N. Zhang, D.M. Sun*, K. Luo, J. Zou, L.M. Qiu, Acoustic matching of a traveling-wave thermoacoustic electric generator, Applied Thermal Engineering 102, 272-282, 2016.

[54]    K. Wang, D.M. Sun*, J. Zhang, Y. Xu, K. Luo, N. Zhang, J. Zou, L.M. Qiu, An acoustically matched traveling-wave thermoacoustic generator achieving 750 W electric power, Energy 103, 313-321,  2016.

[55]    K. Wang, S. Dubey, F.H. Choo, F. Duan*, Modelling of pulse tube refrigerators with inertance tube and mass-spring feedback mechanism, Applied Energy 171, 172-183, 2016.

[56]    D.M. Sun, K. Wang, Y.N. Guo, J. Zhang, Y. Xu, J. Zou, X.B. Zhang*, CFD study on Taconis thermoacoustic oscillation with cryogenic hydrogen as working gas, Cryogenics 75, 38-46, 2016.

[57]    K. Wang, D.M. Sun*, J. Zhang, N. Zhang, K. Luo, L.M. Qiu, Beating effect between a thermoacoustic source and its mechanical partner, Journal of Applied Physics 118, 244907, 2015.

[58]    K. Wang, D.M. Sun*, J. Zhang, Y. Xu, J. Zou, K. Wu, L.M. Qiu, Z.Y. Huang, Operating characteristics and performance improvements of a 500 W traveling-wave thermoacoustic electric generator, Applied Energy 160, 853-862, 2015.

[59]    K. Wang, D.M. Sun*, J. Zhang, J. Zou, K. Wu, L.M. Qiu, Z.Y. Huang, Numerical simulation on onset characteristics of traveling-wave thermoacoustic engines based on a time-domain network model, International Journal of Thermal Sciences 94, 61-71, 2015.

[60]    K. Wang, D.M. Sun*, Y. Xu, J. Zou, X.B. Zhang, L.M. Qiu, Operating characteristics of thermoacoustic compression based on alternating to direct gas flow conversion. Energy 75, 338-348, 2014.

[61]    D.M. Sun, K. Wang, L.M. Qiu, B.H. Lai, Y.F. Li, X.B. Zhang*, Theoretical and experimental investigation of onset characteristics of standing-wave thermoacoustic engines based on thermodynamic analysis, Applied Acoustics 81, 50-57, 2014.

[62]    K. Wang, D.M. Sun*, Y. Xu, Q. Shen, J. Zou, X.B. Zhang, L.M. Qiu, Experimental study on a 500 W traveling-wave thermoacoustic electric generator. Energy Procedia 61, 2271-2274, 2014.

[63]    D.M. Sun, K. Wang, X.J. Zhang*, Y.N. Guo, Y. Xu, L.M. Qiu, A traveling-wave thermoacoustic electric generator with a variable electric R-C load, Applied Energy 106, 377-382, 2013.

[64]    L.M. Qiu, P. Lou, K. Wang, B. Wang, D.M. Sun, J.F. Rao, X.J. Zhang*, Characteristics of onset and damping in a standing-wave thermoacoustic engine driven by liquid nitrogen, Chinese Science Bulletin 58(11), 1325-1330, 2013.

[65]    B. Wang, L.M. Qiu*, K. Wang, D.M. Sun, X.J. Zhang, W.J. Yang, J.H. Zhou, Infrared imaging as a means of visually characterizing the thermoacoustic onset process influenced by Helmholtz resonator, Applied Acoustics 73, 508-513, 2012.

[66]    D.M. Sun, K. Wang, Y. Xu, Q. Shen, X.J. Zhang*, L.M. Qiu, Thermoacoustic compression based on alternating to direct gas flow conversion, Journal of Applied Physics 111, 094905, 2012.

[67]    B. Wang, L.M. Qiu*, D.M. Sun, K. Wang, W.J. Yang, J.H. Zhou, Visualization observation of onset and damping behaviors in a traveling-wave thermoacoustic engine by infrared imaging. International Journal of Heat and Mass Transfer 54 (23-24), 5070-5076, 2011.

[68]    B. Wang, L.M. Qiu*, D.M. Sun, Y. Liu, K. Wang, Study on energy flows in thermoacoustic engines utilizing two-temperature heat sources, Energy Conversion and Management 52 (2), 1066-1072, 2011.

 

 三、会议报告 (Conference Presentations)


[1]    World Energy Storage Conference 2022 (WESC2022),英国伯明翰, 2022年10月,邀请报告

[2]    第七届热力学与能源利用青年学术论坛暨高效热力循环及能量综合利用研讨会,天津,2021年5月,邀请报告

[3]    第十一届全国制冷新技术研讨会,长沙,2020年9月,特邀大会报告

[4]    第十七届长三角科技论坛电力分论坛暨2020浙江大湾区智慧能源论坛,台州,2020年9月,邀请报告

[5]     K. Wang, A.M. Pantaleo, G.S. Mugnozza, C.N. Markides, Technoeconomic assessment of solar combined heat and power systems based on hybrid PVT collectors in greenhouse applications, The 10th International Conference on Indoor Air Quality, Ventilation and Energy Conservation in Buildings (IAQVEC 2019), Bari, Italy, 5-7 September 2019.

[6]     K. Wang, A.M. Pantaleo, M. Herrando, I. Pesmazoglou, B.M. Franchetti, C.N. Markides, Thermoeconomic assessment of a spectral-splitting hybrid PVT system in dairy farms for combined heat and power. The 32nd International Conference on Efficiency, Cost, Optimization, Simulation and Environmental Impact of Energy Systems (ECOS 2019), Wrocław, Poland, 23-28 June 2019.

[7]     K. Wang, A.M. Pantaleo, O.A. Oyewunmi, C.N. Markides, Flexible PVT-ORC hybrid solar-biomass cogeneration systems: the case study of the University Sports Centre in Bari, Italy. The 5th International Seminar on ORC Power Systems, Athens, Greece, 9-11 September 2019.

[8]     X.Y. Li, J. Song, M. Simpson, K. Wang, P. Sapin, G.Q. Shu, H. Tian, C.N. Markides, Thermo-economic comparison of organic Rankine and CO2 cycle systems for low-to-medium temperature applications. The 5th International Seminar on ORC Power Systems, Athens, Greece, 9-11 September 2019.

[9]     J. Song, X.Y. Li, K. Wang, M. Simpson, P. Sapin, G.Q. Shu, H. Tian, C.N. Markides, Thermodynamic and economic comparison of organic Rankine cycle (ORC) and CO2-cycle systems in internal combustion engine (ICE) waste-heat recovery applications. The 5th Sustainable Thermal Energy Management International Conference (SusTEM 2019), Hangzhou, China, 14-16 May 2019.

[10]   A. Najjaran, A.A. Harraz, P. Sapin, K. Wang, C.N. Markides, Experimental investigation on the start time of a small-scale diffusion absorption refrigeration (DAR) unit. Heat Transfer, Fluid Mechanics and Thermodynamics 2019 (HEFAT 2019), Wicklow, Ireland, 22-24 July 2019.

[11]   K. Wang, C.N. Markides, Solar hybrid PV-thermal combined cooling, heating and power systems. The 5th International Conference on Polygeneration (ICP 2019), Fukuoka, Japan, 15-17 May 2019. [Keynote]

[12]   A.A. Al Kindi, A.M. Pantaleo, K. Wang, C.N. Markides, Thermodynamic assessment of steam-accumulation thermal energy storage in concentrating solar power plants. International Conference on Applied Energy 2019 (ICAE 2019), Västerås, Sweden, 12-15 August 2019.

[13]   J. Song, K. Wang, C.N. Markides, Thermodynamic assessment of combined supercritical CO2 (sCO2) and organic Rankine cycle (ORC) systems for concentrated solar power. International Conference on Applied Energy 2019 (ICAE 2019), Västerås, Sweden, 12-15 August 2019.

[14]   G. Chen, Y.F. Wang, L.H. Tang, K. Wang, B.R. Mace, Large eddy simulation of self-excited acoustic oscillations in a thermoacoustic engine, International Conference on Applied Energy 2019 (ICAE 2019), Västerås, Sweden, 12-15 August 2019.

[15]   K. Wang, M. Herrando, A.M. Pantaleo, et al., Thermodynamic and Thermoeconomic Assessments of a PVT-ORC Combined Heating and Power System for Swimming Pools. Heat Powered Cycles Conference 2018 (HPC 2018), Bayreuth, Germany, 16-19 September 2018.

[16]   M. Herrando, A.M. Pantaleo, K. Wang, C.N. Markides, Technoeconomic assessment of a PVT-based solar combined cooling heating and power (S-CCHP) system for the University Campus of Bari. The 13th Conference on Sustainable Development of Energy, Water and Environment Systems (SDEWES 2019), Palermo, Italy, 30 September-4 October 2018.

[17]   K. Wang, S. Dubey, F.H. Choo, F. Duan, Recovering cold energy and waste heat in a LNG power generation system by a thermoacoustic Stirling power generator. The 4th Sustainable Thermal Energy Management International Conference (SusTEM 2017), Alkmaar, Netherlands, 28-30 June 2017.

[18]   K. Wang, L.M. Qiu, Four-stage looped thermoacoustic Stirling power generator for low temperature waste heat. The 4th Sustainable Thermal Energy Management International Conference (SusTEM 2017), Alkmaar Netherlands, 28-30 June 2017.

[19]   K. Wang, S. Dubey, F.H. Choo, F. Duan, Stirling engine for recovering LNG cold energy and exhaust heat. the 26th International Cryogenic Engineering Conference – International Cryogenic Material Conference 2016, New Delhi, India, 7-11 March 2016.

[20]   K. Wang, D.M. Sun, Y.N. Guo, et al., Study on the resonance characteristics of a traveling-wave thermoacoustic electric generation system. The 5th International Conference on Cryogenics and Refrigeration, Hangzhou, China, 6-9 April 2013.

[21]   K. Wang, L.M. Qiu, B. Wang, et al., A standing-wave thermoacoustic engine driven by liquid nitrogen, in Advances in Cryogenic Engineering: transactions of the Cryogenic Engineering Conference-CEC, volume 1434, 351-358, 2012.

[22]   D.M. Sun, K. Wang, et al., Investigation on high-power Stirling-type pulse tube coolers working below 30 K. the 24th International Cryogenic Engineering Conference – International Cryogenic Material Conference 2012, Fukuoka, Japan, 14-18 May 2012.

专利成果

一、已申请发明专利

[1]  一种节省液氢用量的高安全性液氢储罐测试系统及方法,中国发明专利,申请号:202210337587.X

[2]  一种基于冷藏车的尾气余热能量高效回收系统,中国发明专利,申请号:202210364023.5

[3]  一种用于回收液冷数据中心余热的热泵储电系统,中国发明专利,申请号:202111324118.6

二、代表性已授权发明专利

[1]  一种基于低温制冷机的氢气液化和蒸发气再冷凝系统,中国发明专利,申请号:202210337034.4

[2]  一种分温区组合式正仲氢连续转化低温氢气板翅式换热器,中国发明专利,专利号:ZL202210020187.6

[3]  一种由热声发动机驱动的低温流体往复式压缩设备,中国发明专利,专利号:ZL202111390976.0

[4]  一种自由活塞发动机直接驱动的低温制冷机,中国发明专利,专利号:ZL202010044315.1

[5]  一种热声发动机耦合的自由活塞直线发电系统,中国发明专利,专利号:ZL202010044319.X

[6]  一种回收压缩空气余热并进行预除湿和预冷的空分系统,中国发明专利,专利号:ZL202010486237.0

[7]  基于液氮的灭火与保温一体化的车载液氢储罐集成装置,中国发明专利,专利号:ZL201911418464.3

[8]  Power Generation System and Method, 美国发明专利,专利号:US10577983B2

学术任职

一、期刊与会议任职

[1]  国际期刊Applied Thermal Engineering编委、Assistant Editor/Managing Editor,2019-至今

[2]  浙江大学学报(英文版)A辑:应用物理与工程(Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), JZUSA)青年编委,2022至今

[3]  低温领域核心期刊《真空与低温》第一届青年编委,2020-至今

[4]  第28届国际低温工程大会暨2022国际低温材料大会(ICEC28-ICMC 2022),大会秘书长、学术委员会委员、分会场主席,2022

[5]  The 8th Heat Powered Cycles Conference (HPC2018), Bayreuth, Germany, 分会场主席,2018

[6]  International Conference on Applied Energy (ICAE2018), Hong Kong, China, 分会场主席,2018

[7] The 4th Sustainable Thermal Energy Management International Conference (SusTEM2017), Alkmaar, Netherlands, 技术委员会委员,2017

二、学术团体任职

[1]  中国制冷学会第十届理事会青年工作委员会,委员,2021-至今

[2]  中国制冷学会会员,2021-至今

[3]  浙江省制冷学会会员,2021-至今

三、其他学术服务

[1]   英国工程和自然科学研究委员会(EPSRC)Standard Grants基金项目评审专家,2019-至今

[2]   英国工程和自然科学研究委员会(EPSRC)Open Fellowship项目评审专家,2021

[3]   英国研究与创新署(UKRI)Future Leaders Fellowships项目评审专家,2021

[4]   新加坡国家自然科学基金项目评审专家,2022

奖励荣誉

[1]  国家级青年人才计划入选者,2020年

[2]  浙江大学能源工程学院院级先进个人,2020年

[3]  浙江大学青年教师教学竞赛优胜奖,2020年

[4]  国际制冷学会青年奖萨迪·卡诺奖(Sadi Carnot Award),2019年

招生招聘

浙江大学能源工程学院邱利民教授团队诚聘博士后和工程师

 

浙江大学能源工程学院邱利民教授团队因科研工作需要,诚聘低温工程相关方向博士后2 - 3名、工程师1名。

课题组简介

邱利民教授团队以“立足低温制冷科技前沿、培养国际水准创新人才,携手国内国外领军企业、服务节能减排国家需求”为目标,专注于低温过程节能、大规模低温气体液化及分离、新型低温制冷方法等方面基础与应用研究。团队负责人邱利民教授系教育部“长江学者”特聘教授、求是特聘教授、中组部第二批“万人计划”科技创新领军人才、国家杰出青年科学基金获得者,研究成果获国家技术发明二等奖、省部级技术发明二等奖等多项。团队王凯研究员,先后留学新加坡南洋理工大学和英国帝国理工学院,入选浙江大学“百人计划”,研究成果获国际制冷学会“萨迪卡诺奖”等;团队植晓琴副教授,曾留学美国威斯康辛大学麦迪逊分校和德国吉森大学,研究成果获国际制冷学会“卡尔林德奖”等;团队包士然研究员,曾留学美国国家强磁场实验室,入选浙江大学“百人计划”,研究成果获国际制冷学会“皮特卡皮查奖”、国际低温工程大会“克里宾奖”等。

更详细信息可参阅团队教师主页:

邱利民 教 授:https://person.zju.edu.cn/qiulimin

王 凯 研究员:https://person.zju.edu.cn/kaiwang

植晓琴 副教授:https://person.zju.edu.cn/0015155

包士然 研究员:https://person.zju.edu.cn/srbao

 

博士后:2 - 3名

- 岗位职责

(1)氢能利用:液氢生产、储运和加注系统相关流程设计、核心设备研发和关键低温过程研究;

(2)传热传质:大型空分、氢液化或天然气液化等低温系统内的低温传热传质过程研究;

(3)余热回收:工业余热回收利用技术研究,如有机朗肯循环、除湿等;

(4)软件开发:低温系统或设备设计软件平台开发;

(5)其他与低温工程有关方向。

- 应聘条件

(1)已获得或即将获得博士学位,年龄一般不超过35周岁;

(2)专业方向为动力工程及工程热物理、能源工程、机械工程等相关领域,或具有与所招聘方向相关的研究工作经历;

(3)具有较强的中英文文字驾驭与交流能力;

(4)具有较好的创新意识和独立科研能力;

(5)具有良好的团队协作精神,勤奋主动,严谨负责,善于沟通。

- 薪酬待遇

(1)按照浙江大学博士后管理相关规定,提供具有竞争力的待遇(年薪20万—30万);

(2)可按照学校有关规定,申请租住学校教师公寓或申请学校租房补助;

(3)提供良好的科研支撑条件,支持申请国家自然科学基金、博士后科学基金等;

(4)人事关系转入浙江大学后,博士后在站时间满2年,可申报浙江大学高级专业技术职务任职资格,特别优秀者可优先推荐申请浙江大学教职岗位;

(5)其他福利按照浙江大学博士后管理相关规定执行。

- 应聘材料

(1) 个人简历:教育背景、研究经历、项目经历、成果情况及奖励荣誉等;

(2) 博士学位论文简介及3篇代表性论文全文;

(3) 个人研究兴趣及受聘后的工作设想和目标(200字以内);

(4) 2位及以上推荐人的联系方式(姓名、邮件、电话)。

 

工程师:1名

- 岗位职责

(1)承担团队实验室的日常管理、实验台搭建、实验开展、设备维护等工作;

(2)协助完成实验台设计、校核、绘图、加工、组装、测控等;

(3)承担团队其他相关任务。

- 应聘条件

(1)具有丰富的机械设计、加工、装配、控制等相关实践经验;

(2)具有机械设计校核和制图等相关能力,熟练运用Word、Excel等办公软件、AutoCAD或SolidWorks等绘图软件;

(3)具有良好的团队协作精神,勤奋主动,严谨负责,善于沟通;

(4)优先考虑有相关工作经验者。

- 薪酬待遇

(1)年薪面议,视工作绩效另提供相应奖励;

(2)优越的高校环境和资源,与师生共同学习、工作、就餐;

(3)享有团队规定的寒暑假休假。

- 应聘材料

(1)个人简历:教育背景、工作经历、项目经历及奖励荣誉等;

(2)个人技术专长描述(1页内)。

联系方式

申请者请将相关材料发送至kaiwang19@zju.edu.cn,邮件标题请注明“应聘职位+本人姓名”,并在邮件中注明预计可到岗时间。

截止日期:本招聘长期有效