期刊论文
[1] N. Garceau, S.R. Bao, W. Guo, Heat and mass transfer during a sudden loss of vacuum in a liquid helium cooled tube - Part III: Heat deposition in He II, International Journal of Heat and Mass Transfer. 181 (2021) 121885. https://doi.org/10.1016/j.ijheatmasstransfer.2021.121885.
[2] S.R. Bao, W. Guo, Transient heat transfer of superfluid 4He in nonhomogeneous geometries: Second sound, rarefaction, and thermal layer, Phys. Rev. B. 103 (2021) 134510. https://doi.org/10.1103/PhysRevB.103.134510.
[3] Y. Tang, S.R. Bao, W. Guo, Superdiffusion of quantized vortices uncovering scaling laws in quantum turbulence, Proc Natl Acad Sci USA. 118 (2021) e2021957118. https://doi.org/10.1073/pnas.2021957118.
[4] S.R. Bao, T. Kanai, Y. Zhang, L.N. Cattafesta, W. Guo, Stereoscopic detection of hot spots in superfluid 4He (He II) for accelerator-cavity diagnosis, Int. J. Heat Mass Transf. 161 (2020) 120259. https://doi.org/10.1016/j.ijheatmasstransfer.2020.120259.
[5] H. Sanavandi, S. Bao, Y. Zhang, R. Keijzer, W. Guo, L.N. Cattafesta, A cryogenic-helium pipe flow facility with unique double-line molecular tagging velocimetry capability, Rev. Sci. Instrum. 91 (2020) 053901. https://doi.org/10.1063/5.0008117.
[6] X. Wen, S.R. Bao, L. McDonald, J. Pierce, G.L. Greene, L. Crow, X. Tong, A. Mezzacappa, R. Glasby, W. Guo, M.R. Fitzsimmons, Imaging fluorescence of He2* excimers created by neutron capture in liquid helium II, Phys. Rev. Lett. 124 (2020) 134502. https://doi.org/10.1103/PhysRevLett.124.134502.
[7] S.R. Bao, N. Garceau, W. Guo, Heat and mass transfer during a sudden loss of vacuum in a liquid helium cooled tube – Part II: Theoretical modeling, International Journal of Heat and Mass Transfer. 146 (2020) 118883. https://doi.org/10.1016/j.ijheatmasstransfer.2019.118883.
[8] B. Mastracci, S.R. Bao, W. Guo, W.F. Vinen, Particle tracking velocimetry applied to thermal counterflow in superfluid 4: Motion of the normal fluid at small heat fluxes, Phys. Rev. Fluids. 4 (2019) 083305. https://doi.org/10.1103/PhysRevFluids.4.083305.
[9] S.R. Bao, R.P. Zhang, Y.Y.M. Rong, X.Q. Zhi, L.M. Qiu, Interferometric study of the heat and mass transfer during the mixing and evaporation of liquid oxygen and nitrogen under non-uniform magnetic field, International Journal of Heat and Mass Transfer. 136 (2019) 10–19. https://doi.org/10.1016/j.ijheatmasstransfer.2019.02.044.
[10] S.R. Bao, W. Guo, Quench-spot detection for superconducting accelerator cavities via flow visualization in superfluid helium-4, Phys. Rev. Applied. 11 (2019) 044003. https://doi.org/10.1103/PhysRevApplied.11.044003.
[11] R.P. Zhang, S.R. Bao, C.J. Gu, L.M. Qiu, X.Q. Zhi, X.B. Zhang, Numerical study on the bubble rising behavior in liquid oxygen under magnetic field, Cryogenics. 101 (2019) 43–52. https://doi.org/10.1016/j.cryogenics.2019.04.003.
[12] N. Garceau, S.R. Bao, W. Guo, Heat and mass transfer during a sudden loss of vacuum in a liquid helium cooled tube – Part I: Interpretation of experimental observations, International Journal of Heat and Mass Transfer. 129 (2019) 1144–1150. https://doi.org/10.1016/j.ijheatmasstransfer.2018.10.053.
[13] N. Garceau, S. Bao, W. Guo, S. Van Sciver, The design and testing of a liquid helium cooled tube system for simulating sudden vacuum loss in particle accelerators, Cryogenics. (2019).
[14] S.R. Bao, W. Guo, V.S. L’vov, A. Pomyalov, Statistics of turbulence and intermittency enhancement in superfluid 4He counterflow, Phys. Rev. B. 98 (2018) 174509. https://doi.org/10.1103/PhysRevB.98.174509.
[15] Y. Tang, L.M. Qiu, Y. Bai, J. Song, S.R. Bao, X.B. Zhang, J.J. Wang, Experimental study on film condensation characteristics at liquid nitrogen temperatures, Applied Thermal Engineering. 127 (2017) 256–265. https://doi.org/10.1016/j.applthermaleng.2017.06.074.
[16] S.R. Bao, R.P. Zhang, K. Wang, X.Q. Zhi, L.M. Qiu, Free-surface flow of liquid oxygen under non-uniform magnetic field, Cryogenics. 81 (2017) 76–82. https://doi.org/10.1016/j.cryogenics.2016.12.002.
[17] 张瑞平, 张金辉, 包士然, 邱利民, 磁场作用下低温氧氮传质的可视化实验研究, 工程热物理学报. 38 (2017) 2522–2529.
[18] S.R. Bao, R.P. Zhang, Y.F. Zhang, Y. Tang, J.H. Zhang, L.M. Qiu, Enhancing the convective heat transfer in liquid oxygen using alternating magnetic fields, Applied Thermal Engineering. 100 (2016) 125–132. https://doi.org/10.1016/j.applthermaleng.2016.01.088.
[19] 张家源, 唐媛, 邱利民, 包士然, 张小斌, 低温冷凝可视化实验装置设计, 低温工程. (2015) 8-12+44.
[20] 袁灵成, 姜晓波, 邱利民, .M.Pfotenhauer J, 包士然, 张家源, CO2低温凝华可视化实验装置设计, 低温工程. (2015) 30–36.
[21] 包士然, 张金辉, 张小斌, 唐媛, 张瑞平, 邱利民, 磁致空气分离技术的研究进展, 浙江大学学报(工学版). 49 (2015) 605–615.
专利
汤珂; 包士然; 金滔; 李聪航; 刘姝娟. 液化天然气冷能驱动的汽化与冷冻双作用海水淡化装置及方法. ZL201110457558.9, May 22, 2013.
邱利民; 包士然; 张金辉; 张小斌. 梯度磁场辅助低温精馏空气分离方法及装置. ZL201410111337.X, January 20, 2016.
张金辉; 包士然; 邱利民; 张小斌. 一种基于激光干涉法的低温流体可视化监测装置. ZL201410323660.3, April 20, 2016.
邱利民; 唐媛; 张家源; 张小斌; 包士然; 张金辉. 一种深低温冷凝换热过程的可视化实验装置. ZL201410324027.6, May 4, 2016.
唐媛; 白杨; 宋佳; 邱利民; 包士然; 张小斌; 王建军. 一种面向对象的低温冷凝可视化实验装置. ZL201510407896.X, August 22, 2017.
包士然; 张金辉; 张瑞平; 邱利民; 唐媛; 张小斌; 方明虎. 利用热磁对流强化低温含氧流体传热的方法及装置. ZL201510191991.0, October 24, 2017.
包士然; 张瑞平; 张金辉; 邱利民; 唐媛; 张小斌; 方明虎. 低温空气分离的超导磁分离器、分离装置及方法. ZL201510190913.9, October 27, 2017.
张瑞平; 包士然; 唐媛; 宋佳; 邱利民; 张小斌; 植晓琴. 一种提高传热传质性能的精馏塔塔板和精馏塔. ZL201610530926.0, August 24, 2018.