人才队伍

教学科研人员

包士然
包士然 新“百人计划”研究员|博士生导师

电话: 0571-87953944

邮箱: srbao@zju.edu.cn

地址: 浙江大学玉泉校区低温楼309

简介

包士然博士,现任浙江大学能源工程学院新“百人计划”研究员,博士生导师。2017年博士毕业于浙江大学能源工程学院制冷及低温工程专业,2017-2021年在美国国家强磁场实验室 (National High Magnetic Field Laboratory, Tallahassee, USA)任博士后研究员。主要从事超流氦流动与传热、低温流体可视化、大型超导磁体及加速器的低温冷却、低温精馏空气分离等领域的研究,先后在行业权威期刊发表论文20余篇,获中国发明专利授权8项。曾获国际低温工程大会“克里宾奖”、国际制冷学会青年奖“皮特·卡皮查奖”、美国低温工程大会优秀学生论文奖等。

工作经历

2017年10月-2021年9月    博士后研究员(导师: Wei Guo教授)    美国国家强磁场实验室    Tallahassee, USA

2022年1月-至今    新“百人计划”研究员    浙江大学制冷与低温研究所    杭州,中国

教育背景

2012年9月-2017年9月    直攻博    浙江大学能源工程学院    专业:制冷及低温工程

导师: 邱利民教授,张小斌教授,方明虎教授    论文题目: 磁场作用下的低温氧氮混合流体热质传递机理研究

2008年9月-2012年7月    本科    浙江大学能源工程学院    专业:能源与环境系统工程

导师: 邱利民教授    论文题目: 超导磁场作用下的低温空气分离方法初步研究

学术任职

2022年4月-至今    《浙江大学学报(英文版)A辑》青年编委

2022年4月    国际低温工程大会暨低温工程材料大会(28th International Cryogenic Engineering Conference and International Cryogenic Materials Conference 2022,ICEC28-ICMC 2022),线上会议,分会场主席

2021年7月    美国低温工程和低温材料大会(2021 joint 23rd Cryogenic Engineering Conference and International Cryogenic Materials Conference,CEC/ICMC 2021),线上会议,分会场主席



主要研究方向

超流氦传热

低温流体可视化

液氢储运

超导低温冷却

低温精馏空气分离


获奖情况

Shiran Bao; 国际低温工程大会 - 克里宾奖(Gustav and Ingrid Klipping Award),国际学术奖, 国际低温工程委员会 International Cryogenic Engineering Committee,2022年4月;

Shiran Bao; 国际制冷学会青年奖 - 皮特·卡皮查奖(Peter Kapitza IIR Young Researchers Award),国际学术奖, 国际制冷学会 International Institute of Refrigeration (IIR),2019年8月;

包士然、张瑞平、荣杨一鸣、植晓琴、邱利民*;Interferometric study on the mass transfer in cryogenic distillation under magnetic field;美国低温工程大会优秀学生论文奖(CEC Student Meritorious Paper Award),美国低温工程大会 Cryogenic Engineering Conference (CEC),2017年7月。


研究与成果

期刊论文

[1]    N. Garceau, S.R. Bao, W. Guo, Heat and mass transfer during a sudden loss of vacuum in a liquid helium cooled tube - Part III: Heat deposition in He II, International Journal of Heat and Mass Transfer. 181 (2021) 121885. https://doi.org/10.1016/j.ijheatmasstransfer.2021.121885.

[2]    S.R. Bao, W. Guo, Transient heat transfer of superfluid 4He in nonhomogeneous geometries: Second sound, rarefaction, and thermal layer, Phys. Rev. B. 103 (2021) 134510. https://doi.org/10.1103/PhysRevB.103.134510.

[3]    Y. Tang, S.R. Bao, W. Guo, Superdiffusion of quantized vortices uncovering scaling laws in quantum turbulence, Proc Natl Acad Sci USA. 118 (2021) e2021957118. https://doi.org/10.1073/pnas.2021957118.

[4]    S.R. Bao, T. Kanai, Y. Zhang, L.N. Cattafesta, W. Guo, Stereoscopic detection of hot spots in superfluid 4He (He II) for accelerator-cavity diagnosis, Int. J. Heat Mass Transf. 161 (2020) 120259. https://doi.org/10.1016/j.ijheatmasstransfer.2020.120259.

[5]    H. Sanavandi, S. Bao, Y. Zhang, R. Keijzer, W. Guo, L.N. Cattafesta, A cryogenic-helium pipe flow facility with unique double-line molecular tagging velocimetry capability, Rev. Sci. Instrum. 91 (2020) 053901. https://doi.org/10.1063/5.0008117.

[6]    X. Wen, S.R. Bao, L. McDonald, J. Pierce, G.L. Greene, L. Crow, X. Tong, A. Mezzacappa, R. Glasby, W. Guo, M.R. Fitzsimmons, Imaging fluorescence of He2* excimers created by neutron capture in liquid helium II, Phys. Rev. Lett. 124 (2020) 134502. https://doi.org/10.1103/PhysRevLett.124.134502.

[7]    S.R. Bao, N. Garceau, W. Guo, Heat and mass transfer during a sudden loss of vacuum in a liquid helium cooled tube – Part II: Theoretical modeling, International Journal of Heat and Mass Transfer. 146 (2020) 118883. https://doi.org/10.1016/j.ijheatmasstransfer.2019.118883.

[8]    B. Mastracci, S.R. Bao, W. Guo, W.F. Vinen, Particle tracking velocimetry applied to thermal counterflow in superfluid 4: Motion of the normal fluid at small heat fluxes, Phys. Rev. Fluids. 4 (2019) 083305. https://doi.org/10.1103/PhysRevFluids.4.083305.

[9]    S.R. Bao, R.P. Zhang, Y.Y.M. Rong, X.Q. Zhi, L.M. Qiu, Interferometric study of the heat and mass transfer during the mixing and evaporation of liquid oxygen and nitrogen under non-uniform magnetic field, International Journal of Heat and Mass Transfer. 136 (2019) 10–19. https://doi.org/10.1016/j.ijheatmasstransfer.2019.02.044.

[10]    S.R. Bao, W. Guo, Quench-spot detection for superconducting accelerator cavities via flow visualization in superfluid helium-4, Phys. Rev. Applied. 11 (2019) 044003. https://doi.org/10.1103/PhysRevApplied.11.044003.

[11]    R.P. Zhang, S.R. Bao, C.J. Gu, L.M. Qiu, X.Q. Zhi, X.B. Zhang, Numerical study on the bubble rising behavior in liquid oxygen under magnetic field, Cryogenics. 101 (2019) 43–52. https://doi.org/10.1016/j.cryogenics.2019.04.003.

[12]    N. Garceau, S.R. Bao, W. Guo, Heat and mass transfer during a sudden loss of vacuum in a liquid helium cooled tube – Part I: Interpretation of experimental observations, International Journal of Heat and Mass Transfer. 129 (2019) 1144–1150. https://doi.org/10.1016/j.ijheatmasstransfer.2018.10.053.

[13]    N. Garceau, S. Bao, W. Guo, S. Van Sciver, The design and testing of a liquid helium cooled tube system for simulating sudden vacuum loss in particle accelerators, Cryogenics. (2019).

[14]    S.R. Bao, W. Guo, V.S. L’vov, A. Pomyalov, Statistics of turbulence and intermittency enhancement in superfluid 4He counterflow, Phys. Rev. B. 98 (2018) 174509. https://doi.org/10.1103/PhysRevB.98.174509.

[15]    Y. Tang, L.M. Qiu, Y. Bai, J. Song, S.R. Bao, X.B. Zhang, J.J. Wang, Experimental study on film condensation characteristics at liquid nitrogen temperatures, Applied Thermal Engineering. 127 (2017) 256–265. https://doi.org/10.1016/j.applthermaleng.2017.06.074.

[16]    S.R. Bao, R.P. Zhang, K. Wang, X.Q. Zhi, L.M. Qiu, Free-surface flow of liquid oxygen under non-uniform magnetic field, Cryogenics. 81 (2017) 76–82. https://doi.org/10.1016/j.cryogenics.2016.12.002.

[17]    张瑞平, 张金辉, 包士然, 邱利民, 磁场作用下低温氧氮传质的可视化实验研究, 工程热物理学报. 38 (2017) 2522–2529.

[18]    S.R. Bao, R.P. Zhang, Y.F. Zhang, Y. Tang, J.H. Zhang, L.M. Qiu, Enhancing the convective heat transfer in liquid oxygen using alternating magnetic fields, Applied Thermal Engineering. 100 (2016) 125–132. https://doi.org/10.1016/j.applthermaleng.2016.01.088.

[19]    张家源, 唐媛, 邱利民, 包士然, 张小斌, 低温冷凝可视化实验装置设计, 低温工程. (2015) 8-12+44.

[20]    袁灵成, 姜晓波, 邱利民, .M.Pfotenhauer J, 包士然, 张家源, CO2低温凝华可视化实验装置设计, 低温工程. (2015) 30–36.

[21]    包士然, 张金辉, 张小斌, 唐媛, 张瑞平, 邱利民, 磁致空气分离技术的研究进展, 浙江大学学报(工学版). 49 (2015) 605–615.

专利

汤珂; 包士然; 金滔; 李聪航; 刘姝娟. 液化天然气冷能驱动的汽化与冷冻双作用海水淡化装置及方法. ZL201110457558.9, May 22, 2013.

邱利民; 包士然; 张金辉; 张小斌. 梯度磁场辅助低温精馏空气分离方法及装置. ZL201410111337.X, January 20, 2016.

张金辉; 包士然; 邱利民; 张小斌. 一种基于激光干涉法的低温流体可视化监测装置. ZL201410323660.3, April 20, 2016.

邱利民; 唐媛; 张家源; 张小斌; 包士然; 张金辉. 一种深低温冷凝换热过程的可视化实验装置. ZL201410324027.6, May 4, 2016.

唐媛; 白杨; 宋佳; 邱利民; 包士然; 张小斌; 王建军. 一种面向对象的低温冷凝可视化实验装置. ZL201510407896.X, August 22, 2017.

包士然; 张金辉; 张瑞平; 邱利民; 唐媛; 张小斌; 方明虎. 利用热磁对流强化低温含氧流体传热的方法及装置. ZL201510191991.0, October 24, 2017.

包士然; 张瑞平; 张金辉; 邱利民; 唐媛; 张小斌; 方明虎. 低温空气分离的超导磁分离器、分离装置及方法. ZL201510190913.9, October 27, 2017.

张瑞平; 包士然; 唐媛; 宋佳; 邱利民; 张小斌; 植晓琴. 一种提高传热传质性能的精馏塔塔板和精馏塔. ZL201610530926.0, August 24, 2018.


会议报告

[1]    S.R. Bao, W. Guo, Detection of hot spots on accelerator cavities via flow visualization in superfluid 4He (He II), in: 2021 Joint 23rd Cryogenic Engineering Conference and International Cryogenic Materials Conference (CEC-ICMC 2021), Virtual, 2021.

[2]    S.R. Bao, N. Garceau, W. Guo, Understanding the freeze-out length for gas propagation in a liquid-helium-cooled tube, in: 2021 Joint 23rd Cryogenic Engineering Conference and International Cryogenic Materials Conference (CEC-ICMC 2021), Virtual, 2021.

[3]    N. Garceau, S. Bao, W. Guo, Effect of mass flow rate on gas propagation after vacuum break in a liquid helium cooled tube., IOP Conf. Ser.: Mater. Sci. Eng. 755 (2020) 012112. https://doi.org/10.1088/1757-899X/755/1/012112.

[4]    X. Wen, S.R. Bao, L. McDonald, J. Pierce, G.L. Greene, M.L. Crow, X. Tong, A. Mezzacappa, R. Glasby, W. Guo, M. Fitzsimmons, Imaging Fluorescence of He2* Excimers Created by Neutron Capture in Liquid He II—a New Approach for Turbulent Flow Research, in: Bulletin of the American Physical Society, American Physical Society, Denver, 2020. http://meetings.aps.org/Meeting/MAR20/Session/M20.4 (accessed March 27, 2020).

[5]    H. Sanavandi, S.R. Bao, Y. Zhang, W. Guo, L. Cattafesta, Molecular Tagging Velocimetry Study of High Reynolds Number Turbulent Pipe Flow in Cryogenic Helium, in: Bulletin of the American Physical Society, American Physical Society, Seattle, 2020. http://meetings.aps.org/Meeting/DFD19/Session/G11.1 (accessed March 27, 2020).

[6]    S.R. Bao, W. Guo, Quench spot detection for SRF cavities via flow visualization in superfluid helium-4, in: 2019 Joint 22rd Cryogenic Engineering Conference and International Cryogenic Materials Conference (CEC-ICMC 2019), Hartford, USA, 2019.

[7]    S.R. Bao, O. Yeung, W. Guo, Quench detection of SRF cavities using He2* molecular tracer-line tracking technique in superfluid helium, in: 27th International Cryogenic Engineering Conference and International Cryogenic Materials Conference 2018 (ICEC-ICMC 2018), Oxford, England, 2018.

[8]    S.R. Bao, N. Garceau, W. Guo, Modelling the propagation of condensable gas following a sudden vacuum loss in liquid-helium cooled tubes, in: 27th International Cryogenic Engineering Conference and International Cryogenic Materials Conference 2018 (ICEC-ICMC 2018), Oxford, England, 2018.

[9]    S.R. Bao, R.P. Zhang, Y.Y. Rong, X.Q. Zhi, L.M. Qiu, Interferometric study on the mass transfer in cryogenic distillation under magnetic field, IOP Conference Series: Materials Science and Engineering. 278 (2017) 012135. https://doi.org/10.1088/1757-899X/278/1/012135.

[10]    S.R. Bao, L.M. Qiu, J.H. Zhang, R.P. Zhang, Enhancement of cryogenic distillation by the presence of gradient magnetic field, in: 25th International Cryogenic Engineering Conference and International Cryogenic Materials Conference 2014 (ICEC-ICMC 2014), Enschede, Netherlands, 2014.

[11]    包士然, 邱利民, 张金辉, 磁力作用下氧氮混合物流动的有限元分析, in: 中国工程热物理学会2013年工程热力学与能源利用、工程热力学、热机气动热力学与流体机械学术会议, 呼和浩特, 中国, 2013.